Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 882:1a84433ebc1b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 30 Sep 2022 17:48:11 +0900 |
parents | 3c2ab35da199 |
children | b7fb839cdcd0 |
files | src/zorn.agda |
diffstat | 1 files changed, 4 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Sep 30 17:35:37 2022 +0900 +++ b/src/zorn.agda Fri Sep 30 17:48:11 2022 +0900 @@ -836,8 +836,8 @@ -- supf0 px ≡ px -- supf0 px ≡ supf0 x - no-extension : ( (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain x f) → ZChain A f mf ay x - no-extension P with osuc-≡< (ZChain.x≤supfx zc ) + zc4 : ZChain A f mf ay x + zc4 with osuc-≡< (ZChain.x≤supfx zc ) ... | case1 sfpx=px = ? where pchainpx : HOD pchainpx = record { od = record { def = λ z → (odef A z ∧ UChain A f mf ay supf0 px z ) ∨ FClosure A f px z } ; odmax = & A ; <odmax = zc00 } where @@ -1094,7 +1094,7 @@ ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) zc32 = ZChain.sup zc o≤-refl zc34 : ¬ (supf0 px ≡ px) → {w : HOD} → UnionCF A f mf ay supf0 z ∋ w → (w ≡ SUP.sup zc32) ∨ (w < SUP.sup zc32) - zc34 ne {w} lt with zc11 P ⟪ proj1 lt , ? ⟫ + zc34 ne {w} lt with zc11 ? ⟪ proj1 lt , ? ⟫ ... | case1 lt = SUP.x<sup zc32 lt ... | case2 ⟪ spx=px , fc ⟫ = ⊥-elim ( ne spx=px ) zc33 : supf0 z ≡ & (SUP.sup zc32) @@ -1113,7 +1113,7 @@ sup=u {b} ab b≤x is-sup with trio< b px ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) ⟪ record { x<sup = λ lt → IsSup.x<sup (proj1 is-sup) lt } , proj2 is-sup ⟫ ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) ⟪ record { x<sup = λ lt → IsSup.x<sup (proj1 is-sup) lt } , proj2 is-sup ⟫ - ... | tri> ¬a ¬b px<b = zc31 P where + ... | tri> ¬a ¬b px<b = zc31 ? where zc30 : x ≡ b zc30 with osuc-≡< b≤x ... | case1 eq = sym (eq) @@ -1129,20 +1129,6 @@ ... | refl = ⊥-elim ( proj2 is-sup record { ax = HasPrev.ax hasPrev ; y = HasPrev.y hasPrev ; ay = ? ; x=fy = HasPrev.x=fy hasPrev } ) - zc4 : ZChain A f mf ay x - zc4 with ODC.∋-p O A (* x) - ... | no noax = no-extension (case1 ( λ s → noax (subst (λ k → odef A k ) (sym &iso) (xSUP.ax s) ))) -- ¬ A ∋ p, just skip - ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) x f ) - -- we have to check adding x preserve is-max ZChain A y f mf x - ... | case1 pr = no-extension (case2 pr) -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next - ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax ) - ... | case1 is-sup = ? -- x is a sup of zc - ... | case2 ¬x=sup = no-extension (case1 nsup) where -- px is not f y' nor sup of former ZChain from y -- no extention - nsup : ¬ xSUP (UnionCF A f mf ay supf0 px) x - nsup s = ¬x=sup z12 where - z12 : IsSup A (UnionCF A f mf ay supf0 px) ax - z12 = record { x<sup = λ {z} lt → subst (λ k → (z ≡ k) ∨ (z << k )) (sym &iso) ( IsSup.x<sup ( xSUP.is-sup s ) lt ) } - ... | no lim = zc5 where pzc : (z : Ordinal) → z o< x → ZChain A f mf ay z