Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1022:1b87669d9b11
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 25 Nov 2022 12:22:22 +0900 |
parents | 1407fed90475 |
children | 52272b5c9d58 |
files | src/zorn.agda |
diffstat | 1 files changed, 24 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Nov 25 10:45:05 2022 +0900 +++ b/src/zorn.agda Fri Nov 25 12:22:22 2022 +0900 @@ -1288,23 +1288,39 @@ cfcs mf< {a} {b} {w} a<b b≤x sa<b fc with trio< b px ... | tri< a ¬b ¬c = ZChain.cfcs zc mf< a<b (o<→≤ a) sa<b fc ... | tri≈ ¬a refl ¬c = ZChain.cfcs zc mf< a<b o≤-refl sa<b fc - ... | tri> ¬a ¬b px<b = ? where + ... | tri> ¬a ¬b px<b = cfcs1 where x=b : x ≡ b - x=b = ? + x=b with trio< x b + ... | tri< a ¬b ¬c = ⊥-elim ( o≤> b≤x a ) + ... | tri≈ ¬a b ¬c = b + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ px<b , zc-b<x _ c ⟫ ) -- px o< b o< x -- a o< x, supf a o< x -- a o< px , supf a o< px → odef U w -- a ≡ px -- supf0 px o< x → odef U w - -- -- x o≤ supf0 px o< x → ⊥ -- supf a ≡ px -- a o< px → odef U w -- a ≡ px → supf px ≡ px → odef U w + cfcs0 : a ≡ px → odef (UnionCF A f mf ay supf0 b) w + cfcs0 a=px = ⟪ A∋fc {A} _ f mf fc , ch-is-sup (supf0 px) spx<b ? ? ⟫ where + spx<b : supf0 px o< b + spx<b = ? + cfcs1 : odef (UnionCF A f mf ay supf0 b) w cfcs1 with trio< a px - ... | tri< a<px ¬b ¬c = chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) (o<→≤ px<b) - ( ZChain.cfcs zc mf< a<px o≤-refl ? fc ) - ... | tri> ¬a ¬b c = ⊥-elim ( o≤> ? c ) - ... | tri≈ ¬a refl ¬c = ? -- supf0 px o< x → odef (UnionCF A f mf ay supf0 x) (supf0 px) - -- x o≤ supf0 px o≤ sp → + ... | tri< a<px ¬b ¬c = cfcs2 where + sa<x : supf0 a o< x + sa<x = ordtrans<-≤ sa<b b≤x + cfcs2 : odef (UnionCF A f mf ay supf0 b) w + cfcs2 with trio< (supf0 a) px + ... | tri< sa<x ¬b ¬c = chain-mono f mf ay (ZChain.supf zc) (ZChain.supf-mono zc) (o<→≤ px<b) + ( ZChain.cfcs zc mf< a<px o≤-refl sa<x fc ) + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , (zc-b<x _ sa<x) ⟫ ) + ... | tri≈ ¬a sa=px ¬c with trio< a px + ... | tri< a<px ¬b ¬c = ⟪ A∋fc {A} _ f mf fc , ch-is-sup (supf0 a) sa<b ? ? ⟫ + ... | tri≈ ¬a a=px ¬c = cfcs0 a=px + ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ c , (zc-b<x _ (ordtrans<-≤ a<b b≤x) ) ⟫ ) + ... | tri≈ ¬a a=px ¬c = cfcs0 a=px + ... | tri> ¬a ¬b c = ⊥-elim ( o≤> (zc-b<x _ (ordtrans<-≤ a<b b≤x)) c ) zc17 : {z : Ordinal } → supf0 z o≤ supf0 px zc17 {z} with trio< z px