Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1312:1ea21618aa61
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Jun 2023 08:05:56 +0900 |
parents | 0d2f3a042fa9 |
children | b8489dcae236 |
files | src/bijection.agda |
diffstat | 1 files changed, 22 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Fri Jun 09 23:28:47 2023 +0900 +++ b/src/bijection.agda Sat Jun 10 08:05:56 2023 +0900 @@ -562,22 +562,34 @@ cn<acn : (i : ℕ) → i ≤ n → fun→ cn (g (f (fun← an i))) ≤ acn lem02 : (n : ℕ) → maxAC n - lem02 n = lem03 _ n ≤-refl where + lem02 n = lem03 n where maxac : (i : ℕ) → maxACN i maxac zero = record { acn = fun→ cn (g (f (fun← an zero))) ; cn<acn = ? } maxac (suc i) with <-cmp (fun→ cn (g (f (fun← an (suc i))))) (maxACN.acn (maxac i)) ... | tri< a ¬b ¬c = record { acn = maxACN.acn (maxac i) ; cn<acn = ? } ... | tri≈ ¬a b ¬c = record { acn = maxACN.acn (maxac i) ; cn<acn = ? } ... | tri> ¬a ¬b c = record { acn = fun→ cn (g (f (fun← an (suc i)))) ; cn<acn = ? } - lem03 : (i j : ℕ) → i ≤ maxACN.acn (maxac j) → maxAC j - lem03 zero zero z≤n with is-A (fun← cn zero) | inspect ( count-A ) zero - ... | yes isa | record { eq = eq1 } = record { ac = zero ; n<ca = subst (λ k → 0 < k) (sym eq1) (s≤s z≤n) } - ... | no nisa | record { eq = eq1 } = ⊥-elim ( nisa record { a = fun← an (maxACN.acn (maxac zero)) ; fa=c = ? } ) where - lem04 : InjectiveF.f gi (InjectiveF.f fi (fun← an zero)) ≡ fun← cn 0 - lem04 with maxACN.cn<acn (maxac zero) 0 ≤-refl - ... | t = ? - lem03 (suc i) zero i≤m = ? - lem03 i (suc j) i≤m = ? + lem03 : (i : ℕ) → maxAC i + lem03 i = lem10 i ? where + lem11 : (i : ℕ) → i ≤ n → fun→ cn (g (f (fun← an i))) ≤ maxACN.acn (maxac n) + lem11 i i≤n = maxACN.cn<acn (maxac n) i i≤n + lem10 : (j : ℕ) → j ≤ maxACN.acn (maxac n) → maxAC j + lem10 zero j≤m = lem12 _ refl where + lem12 : (i : ℕ) → i ≡ fun→ cn (g (f (fun← an zero))) → maxAC zero + lem12 zero i=z with is-A (fun← cn zero) | inspect ( count-A ) zero + ... | yes isa | record { eq = eq1 } = record { ac = zero ; n<ca = subst (λ k → 0 < k) (sym eq1) (s≤s z≤n) } + ... | no nisa | record { eq = eq1 } = ⊥-elim ( nisa record { a = fun← an 0 ; fa=c = trans (sym (fiso← cn _)) (sym (cong (fun← cn) i=z)) } ) + lem12 (suc i) i=z with is-A (fun← cn (suc i)) | inspect ( count-A ) (suc i) + ... | yes isa | record { eq = eq1 } = record { ac = suc i ; n<ca = subst (λ k → 0 < k) (sym eq1) 0<s } + ... | no nisa | record { eq = eq1 } = ⊥-elim ( nisa record { a = fun← an zero ; fa=c = trans (sym (fiso← cn _)) (sym (cong (fun← cn) i=z)) } ) + lem10 (suc j) j≤m = ? where + lem13 : (i : ℕ) → i ≡ fun→ cn (g (f (fun← an (suc j)))) → maxAC (suc j) + lem13 zero i=z with is-A (fun← cn zero) | inspect ( count-A ) zero + ... | yes isa | record { eq = eq1 } = record { ac = zero ; n<ca = ? } + ... | no nisa | record { eq = eq1 } = ⊥-elim ( nisa record { a = fun← an 0 ; fa=c = trans (sym (fiso← cn _)) (sym (cong (fun← cn) ? )) } ) + lem13 (suc i) i=z with is-A (fun← cn (suc i)) | inspect ( count-A ) (suc i) + ... | yes isa | record { eq = eq1 } = record { ac = suc i ; n<ca = ? } -- subst (λ k → 0 < k) (sym eq1) 0<s } + ... | no nisa | record { eq = eq1 } = ⊥-elim ( nisa record { a = fun← an zero ; fa=c = trans (sym (fiso← cn _)) (sym (cong (fun← cn) ? )) } ) lem01 : (n i : ℕ) → n < count-B i → B