Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1324:1eefc6600354
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 11 Jun 2023 18:49:13 +0900 |
parents | 95f6216499d7 |
children | 8b909deb840e |
files | src/bijection.agda |
diffstat | 1 files changed, 27 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Sun Jun 11 17:15:12 2023 +0900 +++ b/src/bijection.agda Sun Jun 11 18:49:13 2023 +0900 @@ -696,30 +696,36 @@ fla-max< zero n i≤n = ? fla-max< (suc i) n i≤n = ? - record FLany (n m : ℕ ) : Set where + fla0 : (i n : ℕ ) → i < suc n → FList (fla-max n) + fla0 zero n lt = FLinsert fl0 [] where + fl0 : FL (fla-max n ) + fl0 = ca<n zero (fla-max< zero n 0<s ) + fla0 (suc i) n (s≤s lt) = FLinsert fl0 fl1 where + fl0 : FL (fla-max n ) + fl0 = ca<n (suc i) (fla-max< (suc i) n ? ) + fl1 = fla0 i n (≤-trans refl-≤s (s≤s lt)) + fla : (n : ℕ) → FList (fla-max n) + fla n = fla0 n n a<sa + + record FLany (n : ℕ ) : Set where field flist : FList (fla-max n) - flany : (i : ℕ) → (i<n : i < suc m ) → (m≤n : suc m < suc n) → Any ( ca<n i (fla-max< i n (<-trans i<n m≤n ) ) ≡_) flist + flany : (i : ℕ) → (i<n : i < suc n ) → Any ( ca<n i (fla-max< i n i<n ) ≡_) flist - fla : (n : ℕ) → FLany n n - fla n = fla0 n a<sa where - fla0 : (i : ℕ ) → i < suc n → FLany n i - fla0 zero lt = record { flist = FLinsert fl0 [] ; flany = fl1 } where - fl0 : FL (fla-max n ) - fl0 = ca<n zero (fla-max< zero n 0<s ) - fl1 : (i : ℕ) (i<n : i < 1) (m≤n : 1 < suc n) → Any (_≡_ (ca<n i (fla-max< i n (<-trans i<n m≤n)))) (FLinsert fl0 []) - fl1 zero (s≤s z≤n) lt = x∈FLins fl0 [] - fla0 (suc i) (s≤s lt) = record { flist = FLinsert fl0 fl1 ; flany = fl2 } where - fl0 : FL (fla-max n ) - fl0 = ca<n i (fla-max< i n (≤-trans lt refl-≤s ) ) - fl1 = FLany.flist ( fla0 i (≤-trans refl-≤s (s≤s lt)) ) - fl3 = x∈FLins fl0 fl1 - fl4 = FLany.flany (fla0 i (≤-trans refl-≤s (s≤s lt))) - fl2 : (j : ℕ) (i<n : j < suc (suc i)) (m≤n : suc (suc i) < suc n) - → Any (_≡_ (ca<n j (fla-max< j n (<-trans i<n m≤n)))) (FLinsert fl0 fl1) - fl2 j i<n m≤n with ≤-∨ i<n - ... | case1 eq = ? - ... | case2 lt = ? -- fl4 ? ? ? -- FLany.flany ( fla0 i ? ) j ? ? + flany : (n : ℕ) → FLany n + flany n = record { flist = fla0 n n a<sa ; flany = ? } where + flany0 : (i : ℕ) → (i<n : i < suc n ) → Any ( ca<n i (fla-max< i n i<n ) ≡_) (fla0 i n i<n) + flany0 zero i<n = fl1 where + fl0 = ca<n zero (fla-max< zero n 0<s ) + fl1 = x∈FLins fl0 [] + flany0 (suc i) (s≤s i<n) = fl3 where + fl0 : FL (fla-max n ) + fl0 = ca<n (suc i) (fla-max< (suc i) n ? ) + fl1 = fla0 i n (≤-trans refl-≤s (s≤s i<n)) + fl3 = x∈FLins fl0 fl1 + fl4 : Any ( ca<n i (fla-max< i n (≤-trans refl-≤s (s≤s i<n)) ) ≡_) (fla0 i n (≤-trans refl-≤s (s≤s i<n))) + fl4 = flany0 i (≤-trans refl-≤s (s≤s i<n)) + lem02 : (n : ℕ) → maxAC n lem02 n = lem03 n where