Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 125:20e59a28d263
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jul 2019 00:20:56 +0900 |
parents | 55c6e1ddc739 |
children | 1114081eb51f |
files | HOD.agda |
diffstat | 1 files changed, 5 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Sun Jun 30 23:09:17 2019 +0900 +++ b/HOD.agda Mon Jul 01 00:20:56 2019 +0900 @@ -265,20 +265,6 @@ -- L0 : {n : Level} → (α : Ordinal {suc n}) → α o< β → L (osuc α) ∋ L α -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : HOD {suc n}) → L α ∋ x → L β ∋ x -record Constructible {n : Level} ( α : Ordinal {suc n}) : Set (suc (suc n)) where - field - LSet : HOD {suc n} - L0 : Def LSet ∋ LSet - L1 : {β : Ordinal {suc n}} → {x : HOD {suc n} } → β o< α → L β ∋ x → LSet ∋ x - -open Constructible - -Lα : {n : Level} → (α : Ordinal {suc n}) → Constructible {n} α -Lα {n} record { lv = Zero ; ord = (Φ .0) } = record { LSet = {!!} ; L0 = {!!} ; L1 = {!!} } -Lα {n} record { lv = lx ; ord = (OSuc lv ox) } = record { LSet = {!!} ; L0 = {!!} ; L1 = {!!} } -Lα {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) - record { LSet = {!!} ; L0 = {!!} ; L1 = {!!} } - omega : { n : Level } → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } @@ -363,25 +349,23 @@ power→ A t P∋t {x} t∋x = proj1 lemma-s where minsup : HOD minsup = ZFSubset A ( Ord ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) - lemma-t : csuc minsup ∋ t - lemma-t = {!!} -- o<→c< (o<-subst (sup-lb (o<-subst (c<→o< P∋t) refl diso )) refl refl ) lemma-s : ZFSubset A ( Ord ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x - lemma-s with osuc-≡< ( o<-subst (c<→o< lemma-t ) refl (sym ord-Ord) ) - lemma-s | case1 eq = {!!} - lemma-s | case2 lt = transitive {n} {minsup} {t} {x} {!!} t∋x + lemma-s with osuc-≡< (sup-lb P∋t) + lemma-s | case1 eq = proj1 ( def-subst t∋x () ? ) + lemma-s | case2 lt = {!!} -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t -- power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A = def-subst {suc n} {_} {_} {Power A} {od→ord t} - {!!} refl lemma1 where + lemma refl lemma1 where lemma-eq : ZFSubset A t == t eq→ lemma-eq {z} w = proj2 w eq← lemma-eq {z} w = record { proj2 = w ; proj1 = def-subst {suc n} {_} {_} {A} {z} ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } lemma1 : od→ord (ZFSubset A (ord→od (od→ord t))) ≡ od→ord t - lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) {!!} + lemma1 = subst (λ k → od→ord (ZFSubset A k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (===-≡ lemma-eq )) lemma : od→ord (ZFSubset A (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset A (ord→od x))) lemma = sup-o< union-u : {X z : HOD {suc n}} → (U>z : Union X ∋ z ) → HOD {suc n}