Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1427:2134c62fdc30
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Jul 2023 16:13:27 +0900 |
parents | 800218d431dc |
children | a2b59bbe5eef |
files | src/cardinal.agda |
diffstat | 1 files changed, 4 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sat Jul 01 16:03:54 2023 +0900 +++ b/src/cardinal.agda Sat Jul 01 16:13:27 2023 +0900 @@ -423,20 +423,16 @@ ... | case1 (next-gf record { y = y ; ay = ay ; x=fy = x=fy } c1) = ⊥-elim (x₁ record { y = y ; ay = subst (λ k → odef k y) (sym *iso) c1 ; x=fy = inject g _ _ _ (b∋fab y _) (trans x=fy (fba-eq (fab-eq refl))) }) - ... | case2 c2 = trans ? ( a-UC-iso11 x be76 be77) where + ... | case2 c2 = a-UC-iso11 x be76 be78 where be76 : odef (* (b - & (Image (& UC) (Injection-⊆ UC⊆a f)))) x be76 = subst (λ k → odef k x) (sym *iso) ⟪ bx , (λ lt → subst (λ k → odef k x → ⊥) (sym *iso) x₁ lt ) ⟫ - be77 : odef (* (& a-UC)) (fba x (proj1 (subst (λ k → odef k x) *iso be76))) - be77 = subst (λ k → odef k (fba x (proj1 (subst (λ k → odef k x) *iso be76)) )) (sym *iso) - ⟪ a∋fba x (proj1 (subst (λ k → odef k x) *iso be76)) , ? ⟫ - be78 : fba x (proj1 (subst (λ k → odef k x) *iso be76)) p + be78 : odef (* (& a-UC)) (fba x (proj1 (subst (λ k → odef k x) *iso be76))) + be78 = subst (λ k → odef k (fba x (proj1 (subst (λ k → odef k x) *iso be76)))) (sym *iso) ⟪ proj1 (subst₂ (λ A → OD.def (od A)) *iso refl (subst (λ k → OD.def (od k) (fba x (proj1 (subst (λ k₁ → OD.def (od k₁) x) *iso (subst (λ k₁ → OD.def (od k₁) x) (sym *iso) ⟪ bx , subst (λ k₁ → OD.def (od k₁) x → ⊥) (sym *iso) x₁ ⟫))))) (sym *iso) ⟪ a∋fba x (proj1 (subst (λ k → OD.def (od k) x) *iso (subst (λ k → OD.def (od k) x) (sym *iso) - ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫))) , (λ cn → - cardinal.be25 O fab b∋fab fab-inject fba a∋fba fba-inject x (subst (λ k → OD.def (od k) x) (sym *iso) - ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫) cn | cn) ⟫)) , c2 ⟫)) + ⟪ bx , subst (λ k → OD.def (od k) x → ⊥) (sym *iso) x₁ ⟫))) , ? ⟫)) , c2 ⟫ be73 : (x : Ordinal) (ax : odef (* a) x) → (cc0 : CC0 x ) → h⁻¹ (be70 x ax cc0) (cc11 ax cc0) ≡ x