Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 143:21b9e78e9359
union remains
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2019 12:34:08 +0900 |
parents | c30bc9f5bd0d |
children | 3ba37037faf4 |
files | HOD.agda |
diffstat | 1 files changed, 6 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Mon Jul 08 12:13:19 2019 +0900 +++ b/HOD.agda Mon Jul 08 12:34:08 2019 +0900 @@ -465,13 +465,15 @@ lemma0 {x} t∋x = c<→o< (t→A t∋x) lemma3 : Def (Ord a) ∋ t lemma3 = ord-power← a t lemma0 + lemma4 : od→ord t ≡ od→ord (A ∩ Ord (od→ord t)) + lemma4 = cong ( λ k → od→ord k ) ( ===-≡ (subst (λ k → t == (A ∩ k)) (sym Ord-ord-≡) (∩-≡ t→A ) )) lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ ord→od x)) - lemma1 with sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {{!!}} - ... | lt = {!!} + lemma1 with sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {od→ord t} + ... | lt = o<-subst {suc n} {_} {_} {_} {_} lt (sym (subst (λ k → od→ord t ≡ k) lemma5 lemma4 )) refl where + lemma5 : od→ord (A ∩ Ord (od→ord t)) ≡ od→ord (A ∩ ord→od (od→ord t)) + lemma5 = cong (λ k → od→ord (A ∩ k )) Ord-ord lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t) lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma4 }) ) where - lemma4 : od→ord t ≡ od→ord (A ∩ Ord (od→ord t)) - lemma4 = cong ( λ k → od→ord k ) ( ===-≡ (subst (λ k → t == (A ∩ k)) (sym Ord-ord-≡) (∩-≡ t→A ) )) ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq