Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1483:2435deeecda9
maxfilter fixed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 30 Jun 2024 19:36:51 +0900 |
parents | 4f597bc6b3d6 |
children | 0b30bb7c7501 |
files | src/ODUtil.agda src/maximum-filter.agda |
diffstat | 2 files changed, 47 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/src/ODUtil.agda Sun Jun 30 16:07:58 2024 +0900 +++ b/src/ODUtil.agda Sun Jun 30 19:36:51 2024 +0900 @@ -50,6 +50,10 @@ ⊆∩-incl-2 : {a b c : HOD} → a ⊆ c → ( b ∩ a ) ⊆ c ⊆∩-incl-2 {a} {b} {c} a<c {z} ab = a<c (proj2 ab) +*iso∩ : {p q : HOD} → (p ∩ q) =h= (* (& p) ∩ * (& q)) +eq→ (*iso∩ {p} {q}) {x} ⟪ px , qx ⟫ = ⟪ eq← *iso px , eq← *iso qx ⟫ +eq← (*iso∩ {p} {q}) {x} ⟪ px , qx ⟫ = ⟪ eq→ *iso px , eq→ *iso qx ⟫ + power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t t∋x = subst (λ k → odef A k ) &iso ( t1 (subst (λ k → odef t k ) (sym &iso) t∋x)) where t1 : {x : HOD } → t ∋ x → A ∋ x
--- a/src/maximum-filter.agda Sun Jun 30 16:07:58 2024 +0900 +++ b/src/maximum-filter.agda Sun Jun 30 19:36:51 2024 +0900 @@ -1,22 +1,25 @@ {-# OPTIONS --cubical-compatible --safe #-} -open import Level +open import Level renaming (zero to Zero ; suc to Suc) open import Ordinals open import logic open import Relation.Nullary -open import Level open import Ordinals import HODBase import OD open import Relation.Nullary +open import Relation.Binary +open import Relation.Binary.PropositionalEquality hiding ( [_] ) + module maximum-filter {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O) (ho< : OD.ODAxiom-ho< O HODAxiom ) (AC : OD.AxiomOfChoice O HODAxiom ) where - -open import Relation.Binary.PropositionalEquality hiding ( [_] ) +-- open import Relation.Binary.Structures open import Data.Empty +open import Data.Nat hiding ( _≤_ ; _<_ ) import OrdUtil +open inOrdinal O open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal @@ -47,8 +50,6 @@ open Filter -open import Relation.Binary.Structures - PO : IsStrictPartialOrder _≡_ _⊂_ PO = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; trans = λ {a} {b} {c} → trans-⊂ {a} {b} {c} @@ -56,9 +57,11 @@ ; <-resp-≈ = record { fst = ( λ {x} {y} {y1} y=y1 xy1 → subst (λ k → x ⊂ k) y=y1 xy1 ) ; snd = (λ {x} {x1} {y} x=x1 x1y → subst (λ k → k ⊂ x) x=x1 x1y ) } } +⊂-cong : {x y w z : HOD} → (O HODBase.== od x) (od w) → (O HODBase.== od y) (od z) → x ⊂ y → w ⊂ z +⊂-cong x=w y=z ⟪ x<y , x⊆y ⟫ = ⟪ subst₂ (λ j k → j o< k) (==→o≡ x=w) (==→o≡ y=z) x<y , (λ wx → eq→ y=z (x⊆y (eq← x=w wx))) ⟫ + import zorn -open zorn O _⊂_ PO - +open zorn O HODAxiom ho< AC _⊂_ ⊂-cong PO -- all filter contains F F⊆X : { L P : HOD } (LP : L ⊆ Power P) → Filter {L} {P} LP → HOD @@ -69,21 +72,21 @@ F→Maximum : {L P : HOD} (LP : L ⊆ Power P) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → o∅ o< & L → {y : Ordinal } → odef (filter F) y → (¬ (filter F ∋ od∅)) → MaximumFilter {L} {P} LP F -F→Maximum {L} {P} LP CAP F 0<L {y} 0<F Fprop = record { mf = mf ; F⊆mf = subst (λ k → filter F ⊆ k ) (sym *iso) mf52 +F→Maximum {L} {P} LP CAP F 0<L {y} 0<F Fprop = record { mf = mf ; F⊆mf = λ {x} lt → eq← *iso (mf52 lt) ; proper = subst (λ k → ¬ ( odef (filter mf ) k)) (sym ord-od∅) ( IsFilter.proper imf) ; is-maximum = mf50 } where FX : HOD FX = F⊆X {L} {P} LP F oF = & (filter F) mf11 : { p q : Ordinal } → odef L q → odef (* oF) p → (* p) ⊆ (* q) → odef (* oF) q - mf11 {p} {q} Lq Fp p⊆q = subst₂ (λ j k → odef j k ) (sym *iso) &iso ( filter1 F (subst (λ k → odef L k) (sym &iso) Lq) - (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fp) p⊆q ) + mf11 {p} {q} Lq Fp p⊆q = eq← *iso ( subst (λ k → odef (filter F) k ) &iso ( filter1 F (subst (λ k → odef L k) (sym &iso) Lq) + (eq→ *iso (subst (λ k → odef (* oF) k ) (sym &iso) Fp)) p⊆q )) mf12 : { p q : Ordinal } → odef (* oF) p → odef (* oF) q → odef L (& ((* p) ∩ (* q))) → odef (* oF) (& ((* p) ∩ (* q))) - mf12 {p} {q} Fp Fq Lpq = subst (λ k → odef k (& ((* p) ∩ (* q))) ) (sym *iso) - ( filter2 F (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fp) (subst₂ (λ j k → odef j k ) *iso (sym &iso) Fq) Lpq) + mf12 {p} {q} Fp Fq Lpq = eq← *iso + ( filter2 F (eq→ *iso (subst (λ k → odef (* oF) k ) (sym &iso) Fp)) (eq→ *iso (subst (λ k → odef (* oF) k ) (sym &iso) Fq)) Lpq) FX∋F : odef FX (& (filter F)) - FX∋F = ⟪ record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) (f⊆L F) ; filter1 = mf11 ; filter2 = mf12 - ; proper = subst₂ (λ j k → ¬ (odef j k) ) (sym *iso) ord-od∅ Fprop } - , subst (λ k → filter F ⊆ k ) (sym *iso) ( λ x → x ) ⟫ + FX∋F = ⟪ record { f⊆L = λ lt → f⊆L F (eq→ *iso lt ) ; filter1 = mf11 ; filter2 = mf12 + ; proper = λ not → Fprop (eq→ *iso (subst (λ k → odef (* (& (filter F)) ) k) (sym ord-od∅) not )) } + , (λ lt → eq← *iso lt ) ⟫ -- -- if filter B (which contains F) is transitive, Union B is also a filter which contains F -- and this is a SUP @@ -94,54 +97,54 @@ ... | tri≈ ¬a b ¬c = record { sup = filter F ; isSUP = record { ax = FX∋F ; x≤sup = λ {y} zy → ⊥-elim (o<¬≡ (sym b) (∈∅< zy)) } } ... | tri> ¬a ¬b 0<B = record { sup = Union B ; isSUP = record { ax = mf13 ; x≤sup = mf40 } } where mf20 : HOD - mf20 = ODC.minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B ))) + mf20 = minimal B (λ eq → (o<¬≡ (sym (==→o≡ eq)) (subst (λ k → k o< & B) (sym ord-od∅) 0<B ))) mf18 : odef B (& mf20 ) - mf18 = ODC.x∋minimal O B (λ eq → (o<¬≡ (cong (&) (sym (==→o≡ eq))) (subst (λ k → k o< & B) (sym ord-od∅) 0<B ))) + mf18 = x∋minimal B (λ eq → (o<¬≡ (sym (==→o≡ eq)) (subst (λ k → k o< & B) (sym ord-od∅) 0<B ))) mf16 : Union B ⊆ L mf16 record { owner = b ; ao = Bb ; ox = bx } = IsFilter.f⊆L ( proj1 ( B⊆FX Bb )) bx mf17 : {p q : Ordinal} → odef L q → odef (* (& (Union B))) p → * p ⊆ * q → odef (* (& (Union B))) q - mf17 {p} {q} Lq bp p⊆q with subst (λ k → odef k p ) *iso bp - ... | record { owner = owner ; ao = ao ; ox = ox } = subst (λ k → odef k q) (sym *iso) - record { owner = owner ; ao = ao ; ox = IsFilter.filter1 mf30 Lq ox p⊆q } where + mf17 {p} {q} Lq bp p⊆q with eq→ *iso bp + ... | record { owner = owner ; ao = ao ; ox = ox } = eq← *iso + record { owner = owner ; ao = ao ; ox = IsFilter.filter1 mf30 Lq ox p⊆q } where mf30 : IsFilter {L} {P} LP owner mf30 = proj1 ( B⊆FX ao ) mf31 : {p q : Ordinal} → odef (* (& (Union B))) p → odef (* (& (Union B))) q → odef L (& ((* p) ∩ (* q))) → odef (* (& (Union B))) (& ((* p) ∩ (* q))) - mf31 {p} {q} bp bq Lpq with subst (λ k → odef k p ) *iso bp | subst (λ k → odef k q ) *iso bq + mf31 {p} {q} bp bq Lpq with eq→ *iso bp | eq→ *iso bq ... | record { owner = bp ; ao = Bbp ; ox = bbp } | record { owner = bq ; ao = Bbq ; ox = bbq } with OB (subst (λ k → odef B k) (sym &iso) Bbp) (subst (λ k → odef B k) (sym &iso) Bbq) - ... | tri< bp⊂bq ¬b ¬c = subst₂ (λ j k → odef j k ) (sym *iso) refl record { owner = bq ; ao = Bbq ; ox = mf36 } where + ... | tri< bp⊂bq ¬b ¬c = eq← *iso record { owner = bq ; ao = Bbq ; ox = mf36 } where mf36 : odef (* bq) (& ((* p) ∩ (* q))) - mf36 = IsFilter.filter2 mf30 (proj2 bp⊂bq bbp) bbq Lpq where + mf36 = IsFilter.filter2 mf30 (eq→ *iso (proj2 bp⊂bq (eq← *iso bbp))) bbq Lpq where mf30 : IsFilter {L} {P} LP bq mf30 = proj1 ( B⊆FX Bbq ) - ... | tri≈ ¬a bq=bp ¬c = subst₂ (λ j k → odef j k ) (sym *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where + ... | tri≈ ¬a bq=bp ¬c = eq← *iso record { owner = bp ; ao = Bbp ; ox = mf36 } where mf36 : odef (* bp) (& ((* p) ∩ (* q))) - mf36 = IsFilter.filter2 mf30 bbp (subst (λ k → odef k q) (sym bq=bp) bbq) Lpq where + mf36 = IsFilter.filter2 mf30 bbp (eq→ (ord→== (sym bq=bp)) bbq) Lpq where mf30 : IsFilter {L} {P} LP bp mf30 = proj1 ( B⊆FX Bbp ) - ... | tri> ¬a ¬b bq⊂bp = subst₂ (λ j k → odef j k ) (sym *iso) refl record { owner = bp ; ao = Bbp ; ox = mf36 } where + ... | tri> ¬a ¬b bq⊂bp = eq← *iso record { owner = bp ; ao = Bbp ; ox = mf36 } where mf36 : odef (* bp) (& ((* p) ∩ (* q))) - mf36 = IsFilter.filter2 mf30 bbp (proj2 bq⊂bp bbq) Lpq where + mf36 = IsFilter.filter2 mf30 bbp (eq→ *iso (proj2 bq⊂bp (eq← *iso bbq))) Lpq where mf30 : IsFilter {L} {P} LP bp mf30 = proj1 ( B⊆FX Bbp ) mf32 : ¬ odef (Union B) o∅ mf32 record { owner = owner ; ao = bo ; ox = o0 } with proj1 ( B⊆FX bo ) ... | record { f⊆L = f⊆L ; filter1 = filter1 ; filter2 = filter2 ; proper = proper } = ⊥-elim ( proper o0 ) mf14 : IsFilter LP (& (Union B)) - mf14 = record { f⊆L = subst (λ k → k ⊆ L) (sym *iso) mf16 ; filter1 = mf17 ; filter2 = mf31 ; proper = subst (λ k → ¬ odef k o∅) (sym *iso) mf32 } + mf14 = record { f⊆L = λ lt → mf16 (eq→ *iso lt) ; filter1 = mf17 ; filter2 = mf31 ; proper = λ not → mf32 (eq→ *iso not) } mf15 : filter F ⊆ Union B - mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = subst (λ k → odef k x) (sym *iso) (mf22 Fx) } where + mf15 {x} Fx = record { owner = & mf20 ; ao = mf18 ; ox = eq← *iso (mf22 Fx) } where mf22 : odef (filter F) x → odef mf20 x - mf22 Fx = subst (λ k → odef k x) *iso ( proj2 (B⊆FX mf18) Fx ) + mf22 Fx = eq→ *iso ( proj2 (B⊆FX mf18) Fx ) mf13 : odef FX (& (Union B)) - mf13 = ⟪ mf14 , subst (λ k → filter F ⊆ k ) (sym *iso) mf15 ⟫ + mf13 = ⟪ mf14 , (λ lt → eq← *iso (mf15 lt) ) ⟫ mf42 : {z : Ordinal} → odef B z → * z ⊆ Union B mf42 {z} Bz {x} zx = record { owner = _ ; ao = Bz ; ox = zx } mf40 : {z : Ordinal} → odef B z → (z ≡ & (Union B)) ∨ ( * z ⊂ * (& (Union B)) ) mf40 {z} Bz with B⊆FX Bz ... | ⟪ filterz , F⊆z ⟫ with osuc-≡< ( ⊆→o≤ {* z} {Union B} (mf42 Bz) ) ... | case1 eq = case1 (trans (sym &iso) eq ) - ... | case2 lt = case2 ⟪ subst₂ (λ j k → j o< & k ) refl (sym *iso) lt , subst (λ k → * z ⊆ k) (sym *iso) (mf42 Bz) ⟫ + ... | case2 lt = case2 ⟪ subst₂ (λ j k → j o< k ) refl (sym (==→o≡ *iso)) lt , (λ lt → eq← *iso (mf42 Bz lt )) ⟫ mx : Maximal FX mx = Zorn-lemma (∈∅< FX∋F) SUP⊆ imf : IsFilter {L} {P} LP (& (Maximal.maximal mx)) @@ -150,23 +153,24 @@ mf00 = IsFilter.f⊆L imf mf01 : { p q : HOD } → L ∋ q → (* (& (Maximal.maximal mx))) ∋ p → p ⊆ q → (* (& (Maximal.maximal mx))) ∋ q mf01 {p} {q} Lq Fq p⊆q = IsFilter.filter1 imf Lq Fq - (λ {x} lt → subst (λ k → odef k x) (sym *iso) ( p⊆q (subst (λ k → odef k x) *iso lt ) )) + (λ {x} lt → eq← *iso ( p⊆q (eq→ *iso lt ) )) mf02 : { p q : HOD } → (* (& (Maximal.maximal mx))) ∋ p → (* (& (Maximal.maximal mx))) ∋ q → L ∋ (p ∩ q) → (* (& (Maximal.maximal mx))) ∋ (p ∩ q) - mf02 {p} {q} Fp Fq Lpq = subst₂ (λ j k → odef (* (& (Maximal.maximal mx))) (& (j ∩ k ))) *iso *iso ( - IsFilter.filter2 imf Fp Fq (subst₂ (λ j k → odef L (& (j ∩ k ))) (sym *iso) (sym *iso) Lpq )) + mf02 {p} {q} Fp Fq Lpq = subst (λ k → odef (* (& (Maximal.maximal mx))) k) (sym (==→o≡ *iso∩)) ( + IsFilter.filter2 imf Fp Fq (subst (λ k → odef L k) (==→o≡ *iso∩ ) Lpq )) mf : Filter {L} {P} LP mf = record { filter = * (& (Maximal.maximal mx)) ; f⊆L = mf00 ; filter1 = mf01 ; filter2 = mf02 } mf52 : filter F ⊆ Maximal.maximal mx - mf52 = subst (λ k → filter F ⊆ k ) *iso (proj2 mf53) where + mf52 = λ lt → eq→ *iso (proj2 mf53 lt) where mf53 : FX ∋ Maximal.maximal mx mf53 = Maximal.as mx mf50 : (f : Filter LP) → ¬ (filter f ∋ od∅) → filter F ⊆ filter f → ¬ (* (& (zorn.Maximal.maximal mx)) ⊂ filter f) - mf50 f proper F⊆f = subst (λ k → ¬ ( k ⊂ filter f )) (sym *iso) (Maximal.¬maximal<x mx ⟪ Filter-is-Filter {L} {P} LP f proper , mf51 ⟫ ) where + mf50 f proper F⊆f = λ m<f →(Maximal.¬maximal<x mx ⟪ Filter-is-Filter {L} {P} LP f proper , mf51 ⟫ + ⟪ subst (λ k → k o< & (filter f)) (==→o≡ *iso) (proj1 m<f) , (λ lt → proj2 m<f (eq← *iso lt)) ⟫ ) where mf51 : filter F ⊆ * (& (filter f)) - mf51 = subst (λ k → filter F ⊆ k ) (sym *iso) F⊆f + mf51 = λ lt → eq← *iso (F⊆f lt) F→ultra : {L P : HOD} (LP : L ⊆ Power P) → (CAP : {p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) → (F : Filter {L} {P} LP) → (0<L : o∅ o< & L) → {y : Ordinal} → (0<F : odef (filter F) y) → (proper : ¬ (filter F ∋ od∅))