Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1160:2479884b35b2
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 20 Jan 2023 17:02:09 +0900 |
parents | adba530ce1f0 |
children | b45925515f77 |
files | src/Topology.agda |
diffstat | 1 files changed, 29 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Fri Jan 20 14:40:54 2023 +0900 +++ b/src/Topology.agda Fri Jan 20 17:02:09 2023 +0900 @@ -41,6 +41,8 @@ o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) o∪ : { P : HOD } → P ⊂ OS → OS ∋ Union P OS∋od∅ : OS ∋ od∅ +--- we may add +-- OS∋L : OS ∋ L -- closed Set CS : HOD CS = record { od = record { def = λ x → (* x ⊆ L) ∧ odef OS (& ( L \ (* x ))) } ; odmax = osuc (& L) ; <odmax = tp02 } where @@ -56,8 +58,11 @@ lem0 = subst (λ k → L \ k ≡ od∅) (sym *iso) L\L=0 CS⊆PL : CS ⊆ Power L CS⊆PL {x} Cx y xy = proj1 Cx xy ---- we may add --- OS∋L : OS ∋ L + P\CS=OS : {cs : HOD} → CS ∋ cs → OS ∋ ( L \ cs ) + P\CS=OS {cs} ⟪ cs⊆L , olcs ⟫ = subst (λ k → odef OS k) (cong (λ k → & ( L \ k)) *iso) olcs + P\OS=CS : {cs : HOD} → OS ∋ cs → CS ∋ ( L \ cs ) + P\OS=CS {os} oos = ⟪ subst (λ k → k ⊆ L) (sym *iso) proj1 + , subst (λ k → odef OS k) (cong (&) (trans (sym (L\Lx=x (os⊆L oos))) (cong (λ k → L \ k) (sym *iso)) )) oos ⟫ open Topology @@ -70,6 +75,20 @@ → subst (λ k → odef k x) *iso ((proj2 ic) (& L) (CS∋L top) (subst (λ k → L ⊆ k) (sym *iso) ( λ x → x))) ; eq← = λ {x} lx → ⟪ lx , ( λ c cs l⊆c → l⊆c lx) ⟫ } ) +record NAO {L : HOD} (top : Topology L) (A : HOD) (A⊆L : A ⊆ L) (x : Ordinal) : Set n where + field + ox : odef (OS top) x + na : ¬ ( A ⊆ * x) + +CS∋Cl : {L : HOD} → (top : Topology L) → (A : HOD) → (A⊆L : A ⊆ L) → CS top ∋ Cl top A A⊆L +CS∋Cl {L} top A A⊆L = ⟪ (λ {x} cx → proj1 ( subst (λ k → odef k x) *iso cx )) , ? ⟫ where + NCl : HOD + NCl = record { od = record { def = λ x → NAO top A A⊆L x } ; odmax = & (OS top) ; <odmax = λ lt → odef< (NAO.ox lt) } + NCl⊂OS : NCl ⊂ OS top + NCl⊂OS = ⟪ ? , ? ⟫ + ccl00 : (L \ (Cl top A A⊆L)) ≡ Union NCl + ccl00 = ==→o≡ ( record { eq→ = ? ; eq← = ? } ) + -- Subbase P -- A set of countable intersection of P will be a base (x ix an element of the base) @@ -486,6 +505,14 @@ FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F UF FIP→UFLP {P} TP fip {L} LP F UF = record { limit = FIP.limit fip ? ? ; P∋limit = ? ; is-limit = ? } where + CF : HOD + CF = Replace' (filter F) (λ x fx → Cl TP x (λ {w} xw → LP (f⊆L F fx) _ (subst (λ k → odef k w) (sym *iso) xw )) ) + CF⊆CS : CF ⊆ CS TP + CF⊆CS {x} record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ subst (λ k → k ⊆ P) (trans (sym *iso) (sym (cong (*) x=ψz))) uf01 , uf02 ⟫ where + uf01 : (Cl TP (* z) (λ {w} xw → LP (f⊆L F (subst (odef (filter F)) (sym &iso) az)) w (subst (λ k → odef k w) (sym *iso) xw))) ⊆ P + uf01 = ? + uf02 : odef (OS TP) (& (P \ * x)) + uf02 = ? ufl00 : {v : Ordinal} → Neighbor TP (FIP.limit fip ? ?) v → filter F ⊆ * v ufl00 {v} record { u = u ; ou = ou ; ux = ux ; v⊆P = v⊆P ; o⊆u = o⊆u } = ?