changeset 477:24b4b854b310

separate zorn lemma
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 02 Apr 2022 08:37:17 +0900
parents 3fc164626468
children c6346d92f1a1
files src/ODC.agda src/zorn.agda
diffstat 2 files changed, 173 insertions(+), 131 deletions(-) [+]
line wrap: on
line diff
--- a/src/ODC.agda	Sat Apr 02 08:32:01 2022 +0900
+++ b/src/ODC.agda	Sat Apr 02 08:37:17 2022 +0900
@@ -106,137 +106,6 @@
 OrdP  x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl )
 OrdP  x y | tri> ¬a ¬b c = yes c
 
--- open import Relation.Binary.HeterogeneousEquality as HE -- using (_≅_;refl)
-
-record Element (A : HOD) : Set (suc n) where
-    field
-       elm : HOD
-       is-elm : A ∋ elm
-
-open Element
-
-TotalOrderSet : ( A : HOD ) →  (_<_ : (x y : HOD) → Set n )  → Set (suc n)
-TotalOrderSet A _<_ = Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y )  
-
-PartialOrderSet : ( A : HOD ) →  (_<_ : (x y : HOD) → Set n )  → Set (suc n)
-PartialOrderSet A _<_ = (a b :  Element A)
-     → (elm a < elm b → (¬ (elm b < elm a) ∧ (¬ (elm a ≡ elm b) ))) ∧ (elm a ≡ elm b → (¬ elm a < elm b) ∧ (¬ elm b < elm a))
-
-me : { A a : HOD } → A ∋ a → Element A
-me {A} {a} lt = record { elm = a ; is-elm = lt }
-
-record SUP ( A B : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
-   field
-      sup : HOD
-      A∋maximal : A ∋ sup
-      x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup )
-
-record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
-   field
-      maximal : HOD
-      A∋maximal : A ∋ maximal
-      ¬maximal<x : {x : HOD} → A ∋ x  → ¬ maximal < x
-
-record ZChain ( A : HOD ) (y : Ordinal)  (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
-   field
-      B : HOD
-      B⊆A : B ⊆ A 
-      total : TotalOrderSet B _<_
-      fb : {x : HOD } → A ∋ x  → HOD
-      B∋fb : (x : HOD ) → (ax : A ∋ x)  → B ∋ fb ax
-      ¬x≤sup : (sup : HOD) → (as : A ∋ sup ) → & sup o< osuc y → sup < fb as
-
-Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n }
-    → o∅ o< & A 
-    → ( {a b c : HOD} → a < b → b < c → a < c )
-    → PartialOrderSet A _<_
-    → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B  _<_  )
-    → Maximal A _<_ 
-Zorn-lemma {A} {_<_} 0<A TR PO supP = zorn00 where
-     someA : HOD
-     someA = minimal A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
-     isSomeA : A ∋ someA
-     isSomeA =  x∋minimal A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
-     HasMaximal : HOD
-     HasMaximal = record { od = record { def = λ x → (m : Ordinal) →  odef A m → odef A x ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } where
-         z07 :  {y : Ordinal} → ((m : Ordinal) → odef A y ∧ odef A m ∧ (¬ (* y < * m))) → y o< & A
-         z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 (p (& someA)) )))
-     no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → ((m : Ordinal) →  odef A m →  odef A x ∧ (¬ (* x < * m) )) →  ⊥
-     no-maximum nomx x P = ¬x<0 (eq→ nomx {x} (λ m am → P m am )) 
-     Gtx : { x : HOD} → A ∋ x → HOD
-     Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = {!!} } 
-     z01 : {a b : HOD} → A ∋ a → A ∋ b  → (a ≡ b ) ∨ (a < b ) → b < a → ⊥
-     z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me  A∋b) (me A∋a)) (sym a=b)) b<a
-     z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (PO (me  A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me  A∋b) (me A∋a)) b=a ) b<a ) ⟫
-     ZChain→¬SUP :  (z : ZChain A (& A) _<_ ) →  ¬ (SUP A (ZChain.B z) _<_ )
-     ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z (SUP.A∋maximal sp)) (ZChain.B∋fb z  _ (SUP.A∋maximal sp)) (ZChain.¬x≤sup z _  (SUP.A∋maximal sp) z03 )) where
-         z03 : & (SUP.sup sp) o< osuc (& A)
-         z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc
-         z02 :  (x : HOD) → ZChain.B z ∋ x → SUP.sup sp < x → ⊥
-         z02 x xe s<x = z01 (incl (ZChain.B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x 
-     ind :  HasMaximal =h= od∅
-         → (x : Ordinal) → ((y : Ordinal) → y o< x →  ZChain A y _<_ )
-         →  ZChain A x _<_
-     ind nomx x prev with Oprev-p x
-     ... | yes op with ∋-p A (* x)
-     ... | no ¬Ax = record  { B = ZChain.B zc1 ; B⊆A =  ZChain.B⊆A  zc1 ; total = ZChain.total zc1 ; fb = ZChain.fb zc1 ; B∋fb = ZChain.B∋fb zc1 ; ¬x≤sup = z04 } where
-          -- we have previous ordinal and ¬ A ∋ x, use previous Zchain
-          px = Oprev.oprev op
-          zc1 : ZChain A px _<_
-          zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) 
-          z04 :  (sup : HOD) (as : A ∋ sup) → & sup o< osuc x → sup < ZChain.fb zc1 as
-          z04 sup as s<x with trio< (& sup) x
-          ... | tri≈ ¬a b ¬c = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans b (sym &iso)) as) )  
-          ... | tri< a ¬b ¬c  = ZChain.¬x≤sup zc1 _ as ( subst (λ k → & sup o< k ) (sym (Oprev.oprev=x op)) a )
-          ... | tri> ¬a ¬b c with  osuc-≡< s<x
-          ... | case1 eq = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans eq (sym &iso)) as) )  
-          ... | case2 lt = ⊥-elim (¬a lt )
-     ... | yes ax = z06 where -- we have previous ordinal and A ∋ x
-          px = Oprev.oprev op
-          zc1 : ZChain A px _<_
-          zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) 
-          z06 : ZChain A x _<_
-          z06 with is-o∅ (& (Gtx ax))
-          ... | yes nogt = ⊥-elim (no-maximum nomx x x-is-maximal ) where -- no larger element, so it is maximal
-              x-is-maximal :  (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m))
-              x-is-maximal m am  = ⟪ subst (λ k → odef A k) &iso ax ,  ¬x<m  ⟫ where
-                 ¬x<m :  ¬ (* x < * m)
-                 ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫  (≡o∅→=od∅ nogt) 
-          ... | no not = record { B = Bx     --  we have larger element, let's create ZChain
-              ; B⊆A = B⊆A ; total = {!!} ; fb = {!!} ; B∋fb = {!!} ; ¬x≤sup = {!!} } where
-                 B = ZChain.B zc1 
-                 Bx : HOD
-                 Bx = record { od = record { def = λ y → (x ≡ y) ∨ odef B y } ; odmax = & A ; <odmax = {!!}  } 
-                 B⊆A : Bx ⊆ A
-                 B⊆A = record { incl = λ {y} by → z07 y by  } where
-                     z07 : (y : HOD) → Bx ∋ y → A ∋ y
-                     z07 y (case1 x=y) = subst (λ k → odef A k ) (trans &iso x=y) ax
-                     z07 y (case2 by) = incl (ZChain.B⊆A zc1 ) by
-                 m = minimal (Gtx ax) (λ eq → not (=od∅→≡o∅ eq))
-     ind nomx x prev | no ¬ox with trio< (& A) x   --- limit ordinal case
-     ... | tri< a ¬b ¬c = record { B = ZChain.B zc1
-              ; B⊆A = ZChain.B⊆A zc1 ; total = ZChain.total zc1 ; fb = ZChain.fb zc1 ; B∋fb = ZChain.B∋fb zc1 ; ¬x≤sup = {!!} } where
-          zc1 : ZChain A (& A) _<_
-          zc1 = prev (& A) a 
-     ... | tri≈ ¬a b ¬c = record { B = B
-              ; B⊆A = {!!} ; total = {!!} ; fb = {!!} ; B∋fb = {!!} ; ¬x≤sup = {!!} } where
-          B : HOD
-          B = record { od = record { def = λ y → (y<x : y o< x ) → odef (ZChain.B (prev y y<x)) y } ; odmax = & A ; <odmax = {!!} } 
-     ... | tri> ¬a ¬b c = {!!}
-     zorn00 : Maximal A _<_
-     zorn00 with is-o∅ ( & HasMaximal )
-     ... | no not = record { maximal = minimal HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x  = zorn02 } where
-         zorn03 :  odef HasMaximal ( & ( minimal HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ) )
-         zorn03 =  x∋minimal  HasMaximal  (λ eq → not (=od∅→≡o∅ eq))
-         zorn01 :  A ∋ minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq))
-         zorn01 =  proj1 (zorn03 (& someA) isSomeA ) 
-         zorn02 : {x : HOD} → A ∋ x → ¬ (minimal HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x)
-         zorn02 {x} ax m<x = proj2 (zorn03 (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x )
-     ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A) (≡o∅→=od∅ ¬Maximal)) ( supP B (ZChain.B⊆A (z (& A) (≡o∅→=od∅ ¬Maximal))) (ZChain.total (z (& A) (≡o∅→=od∅ ¬Maximal))) )) where
-         z : (x : Ordinal) → HasMaximal =h= od∅  → ZChain A x _<_ 
-         z x nomx = TransFinite (ind nomx) x
-         B = ZChain.B (z (& A) (≡o∅→=od∅ ¬Maximal)  )
-
 open import zfc
 
 HOD→ZFC : ZFC
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/zorn.agda	Sat Apr 02 08:37:17 2022 +0900
@@ -0,0 +1,173 @@
+open import Level
+open import Ordinals
+module zorn {n : Level } (O : Ordinals {n})   where
+
+open import zf
+open import logic
+-- open import partfunc {n} O
+import OD 
+
+open import Relation.Nullary 
+open import Relation.Binary 
+open import Data.Empty 
+open import Relation.Binary
+open import Relation.Binary.Core
+open import Relation.Binary.PropositionalEquality
+import BAlgbra 
+
+
+open inOrdinal O
+open OD O
+open OD.OD
+open ODAxiom odAxiom
+import OrdUtil
+import ODUtil
+open Ordinals.Ordinals  O
+open Ordinals.IsOrdinals isOrdinal
+open Ordinals.IsNext isNext
+open OrdUtil O
+open ODUtil O
+
+
+import ODC
+
+
+open _∧_
+open _∨_
+open Bool
+
+
+open HOD
+
+record Element (A : HOD) : Set (suc n) where
+    field
+       elm : HOD
+       is-elm : A ∋ elm
+
+open Element
+
+TotalOrderSet : ( A : HOD ) →  (_<_ : (x y : HOD) → Set n )  → Set (suc n)
+TotalOrderSet A _<_ = Trichotomous (λ (x : Element A) y → elm x ≡ elm y ) (λ x y → elm x < elm y )  
+
+PartialOrderSet : ( A : HOD ) →  (_<_ : (x y : HOD) → Set n )  → Set (suc n)
+PartialOrderSet A _<_ = (a b :  Element A)
+     → (elm a < elm b → (¬ (elm b < elm a) ∧ (¬ (elm a ≡ elm b) ))) ∧ (elm a ≡ elm b → (¬ elm a < elm b) ∧ (¬ elm b < elm a))
+
+me : { A a : HOD } → A ∋ a → Element A
+me {A} {a} lt = record { elm = a ; is-elm = lt }
+
+record SUP ( A B : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
+   field
+      sup : HOD
+      A∋maximal : A ∋ sup
+      x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup )
+
+record Maximal ( A : HOD ) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
+   field
+      maximal : HOD
+      A∋maximal : A ∋ maximal
+      ¬maximal<x : {x : HOD} → A ∋ x  → ¬ maximal < x
+
+open _==_
+open _⊆_
+
+record ZChain ( A : HOD ) (y : Ordinal)  (_<_ : (x y : HOD) → Set n ) : Set (suc n) where
+   field
+      B : HOD
+      B⊆A : B ⊆ A 
+      total : TotalOrderSet B _<_
+      fb : {x : HOD } → A ∋ x  → HOD
+      B∋fb : (x : HOD ) → (ax : A ∋ x)  → B ∋ fb ax
+      ¬x≤sup : (sup : HOD) → (as : A ∋ sup ) → & sup o< osuc y → sup < fb as
+
+Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n }
+    → o∅ o< & A 
+    → ( {a b c : HOD} → a < b → b < c → a < c )
+    → PartialOrderSet A _<_
+    → ( ( B : HOD) → (B⊆A : B ⊆ A) → TotalOrderSet B _<_ → SUP A B  _<_  )
+    → Maximal A _<_ 
+Zorn-lemma {A} {_<_} 0<A TR PO supP = zorn00 where
+     someA : HOD
+     someA = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
+     isSomeA : A ∋ someA
+     isSomeA =  ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 
+     HasMaximal : HOD
+     HasMaximal = record { od = record { def = λ x → (m : Ordinal) →  odef A m → odef A x ∧ (¬ (* x < * m))} ; odmax = & A ; <odmax = {!!} } where
+         z07 :  {y : Ordinal} → ((m : Ordinal) → odef A y ∧ odef A m ∧ (¬ (* y < * m))) → y o< & A
+         z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 (p (& someA)) )))
+     no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → ((m : Ordinal) →  odef A m →  odef A x ∧ (¬ (* x < * m) )) →  ⊥
+     no-maximum nomx x P = ¬x<0 (eq→ nomx {x} (λ m am → P m am )) 
+     Gtx : { x : HOD} → A ∋ x → HOD
+     Gtx {x} ax = record { od = record { def = λ y → odef A y ∧ (x < (* y)) } ; odmax = & A ; <odmax = {!!} } 
+     z01 : {a b : HOD} → A ∋ a → A ∋ b  → (a ≡ b ) ∨ (a < b ) → b < a → ⊥
+     z01 {a} {b} A∋a A∋b (case1 a=b) b<a = proj1 (proj2 (PO (me  A∋b) (me A∋a)) (sym a=b)) b<a
+     z01 {a} {b} A∋a A∋b (case2 a<b) b<a = proj1 (PO (me  A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me  A∋b) (me A∋a)) b=a ) b<a ) ⟫
+     ZChain→¬SUP :  (z : ZChain A (& A) _<_ ) →  ¬ (SUP A (ZChain.B z) _<_ )
+     ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z (SUP.A∋maximal sp)) (ZChain.B∋fb z  _ (SUP.A∋maximal sp)) (ZChain.¬x≤sup z _  (SUP.A∋maximal sp) z03 )) where
+         z03 : & (SUP.sup sp) o< osuc (& A)
+         z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc
+         z02 :  (x : HOD) → ZChain.B z ∋ x → SUP.sup sp < x → ⊥
+         z02 x xe s<x = z01 (incl (ZChain.B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x 
+     ind :  HasMaximal =h= od∅
+         → (x : Ordinal) → ((y : Ordinal) → y o< x →  ZChain A y _<_ )
+         →  ZChain A x _<_
+     ind nomx x prev with Oprev-p x
+     ... | yes op with ODC.∋-p O A (* x)
+     ... | no ¬Ax = record  { B = ZChain.B zc1 ; B⊆A =  ZChain.B⊆A  zc1 ; total = ZChain.total zc1 ; fb = ZChain.fb zc1 ; B∋fb = ZChain.B∋fb zc1 ; ¬x≤sup = z04 } where
+          -- we have previous ordinal and ¬ A ∋ x, use previous Zchain
+          px = Oprev.oprev op
+          zc1 : ZChain A px _<_
+          zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) 
+          z04 :  (sup : HOD) (as : A ∋ sup) → & sup o< osuc x → sup < ZChain.fb zc1 as
+          z04 sup as s<x with trio< (& sup) x
+          ... | tri≈ ¬a b ¬c = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans b (sym &iso)) as) )  
+          ... | tri< a ¬b ¬c  = ZChain.¬x≤sup zc1 _ as ( subst (λ k → & sup o< k ) (sym (Oprev.oprev=x op)) a )
+          ... | tri> ¬a ¬b c with  osuc-≡< s<x
+          ... | case1 eq = ⊥-elim (¬Ax (subst (λ k → odef A k) (trans eq (sym &iso)) as) )  
+          ... | case2 lt = ⊥-elim (¬a lt )
+     ... | yes ax = z06 where -- we have previous ordinal and A ∋ x
+          px = Oprev.oprev op
+          zc1 : ZChain A px _<_
+          zc1 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) 
+          z06 : ZChain A x _<_
+          z06 with is-o∅ (& (Gtx ax))
+          ... | yes nogt = ⊥-elim (no-maximum nomx x x-is-maximal ) where -- no larger element, so it is maximal
+              x-is-maximal :  (m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m))
+              x-is-maximal m am  = ⟪ subst (λ k → odef A k) &iso ax ,  ¬x<m  ⟫ where
+                 ¬x<m :  ¬ (* x < * m)
+                 ¬x<m x<m = ∅< {Gtx ax} {* m} ⟪ subst (λ k → odef A k) (sym &iso) am , subst (λ k → * x < k ) (cong (*) (sym &iso)) x<m ⟫  (≡o∅→=od∅ nogt) 
+          ... | no not = record { B = Bx     --  we have larger element, let's create ZChain
+              ; B⊆A = B⊆A ; total = {!!} ; fb = {!!} ; B∋fb = {!!} ; ¬x≤sup = {!!} } where
+                 B = ZChain.B zc1 
+                 Bx : HOD
+                 Bx = record { od = record { def = λ y → (x ≡ y) ∨ odef B y } ; odmax = & A ; <odmax = {!!}  } 
+                 B⊆A : Bx ⊆ A
+                 B⊆A = record { incl = λ {y} by → z07 y by  } where
+                     z07 : (y : HOD) → Bx ∋ y → A ∋ y
+                     z07 y (case1 x=y) = subst (λ k → odef A k ) (trans &iso x=y) ax
+                     z07 y (case2 by) = incl (ZChain.B⊆A zc1 ) by
+                 m = ODC.minimal O (Gtx ax) (λ eq → not (=od∅→≡o∅ eq))
+     ind nomx x prev | no ¬ox with trio< (& A) x   --- limit ordinal case
+     ... | tri< a ¬b ¬c = record { B = ZChain.B zc1
+              ; B⊆A = ZChain.B⊆A zc1 ; total = ZChain.total zc1 ; fb = ZChain.fb zc1 ; B∋fb = ZChain.B∋fb zc1 ; ¬x≤sup = {!!} } where
+          zc1 : ZChain A (& A) _<_
+          zc1 = prev (& A) a 
+     ... | tri≈ ¬a b ¬c = record { B = B
+              ; B⊆A = {!!} ; total = {!!} ; fb = {!!} ; B∋fb = {!!} ; ¬x≤sup = {!!} } where
+          B : HOD
+          B = record { od = record { def = λ y → (y<x : y o< x ) → odef (ZChain.B (prev y y<x)) y } ; odmax = & A ; <odmax = {!!} } 
+     ... | tri> ¬a ¬b c = {!!}
+     zorn00 : Maximal A _<_
+     zorn00 with is-o∅ ( & HasMaximal )
+     ... | no not = record { maximal = ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ; A∋maximal = zorn01 ; ¬maximal<x  = zorn02 } where
+         zorn03 :  odef HasMaximal ( & ( ODC.minimal O HasMaximal  (λ eq → not (=od∅→≡o∅ eq)) ) )
+         zorn03 =  ODC.x∋minimal  O HasMaximal  (λ eq → not (=od∅→≡o∅ eq))
+         zorn01 :  A ∋ ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq))
+         zorn01 =  proj1 (zorn03 (& someA) isSomeA ) 
+         zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x)
+         zorn02 {x} ax m<x = proj2 (zorn03 (& x) ax) (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x )
+     ... | yes ¬Maximal = ⊥-elim ( ZChain→¬SUP (z (& A) (≡o∅→=od∅ ¬Maximal)) ( supP B (ZChain.B⊆A (z (& A) (≡o∅→=od∅ ¬Maximal))) (ZChain.total (z (& A) (≡o∅→=od∅ ¬Maximal))) )) where
+         z : (x : Ordinal) → HasMaximal =h= od∅  → ZChain A x _<_ 
+         z x nomx = TransFinite (ind nomx) x
+         B = ZChain.B (z (& A) (≡o∅→=od∅ ¬Maximal)  )
+