Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1123:256a3ba634f6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 04 Jan 2023 11:21:55 +0900 |
parents | 1c7474446754 |
children | d122d0c1b094 |
files | src/BAlgbra.agda src/Topology.agda |
diffstat | 2 files changed, 26 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/src/BAlgbra.agda Wed Jan 04 09:39:25 2023 +0900 +++ b/src/BAlgbra.agda Wed Jan 04 11:21:55 2023 +0900 @@ -53,6 +53,13 @@ ¬∅∋ : {x : HOD} → ¬ ( od∅ ∋ x ) ¬∅∋ {x} = ¬x<0 +L\L=0 : { L : HOD } → L \ L ≡ od∅ +L\L=0 {L} = ==→o≡ ( record { eq→ = lem0 ; eq← = lem1 } ) where + lem0 : {x : Ordinal} → odef (L \ L) x → odef od∅ x + lem0 {x} ⟪ lx , ¬lx ⟫ = ⊥-elim (¬lx lx) + lem1 : {x : Ordinal} → odef od∅ x → odef (L \ L) x + lem1 {x} lt = ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) + [a-b]∩b=0 : { A B : HOD } → (A \ B) ∩ B ≡ od∅ [a-b]∩b=0 {A} {B} = ==→o≡ record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) ; eq→ = λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) }
--- a/src/Topology.agda Wed Jan 04 09:39:25 2023 +0900 +++ b/src/Topology.agda Wed Jan 04 11:21:55 2023 +0900 @@ -50,10 +50,11 @@ cs⊆L : {x : HOD} → CS ∋ x → x ⊆ L cs⊆L {x} Cx {y} xy = proj1 Cx (subst (λ k → odef k y ) (sym *iso) xy ) CS∋L : CS ∋ L - CS∋L = ⟪ ? , ? ⟫ + CS∋L = ⟪ subst (λ k → k ⊆ L) (sym *iso) (λ x → x) , subst (λ k → odef OS (& k)) (sym lem0) OS∋od∅ ⟫ where + lem0 : L \ * (& L) ≡ od∅ + lem0 = subst (λ k → L \ k ≡ od∅) (sym *iso) L\L=0 --- we may add -- OS∋L : OS ∋ L --- OS∋od∅ : OS ∋ od∅ open Topology @@ -61,6 +62,11 @@ Cl {L} top A A⊆L = record { od = record { def = λ x → (c : Ordinal) → odef (CS top) c → A ⊆ * c → odef (* c) x } ; odmax = & L ; <odmax = ? } +ClL : {L : HOD} → (top : Topology L) → {f : L ⊆ L } → Cl top L f ≡ L +ClL {L} top {f} = ==→o≡ ( record { eq→ = λ {x} ic + → subst (λ k → odef k x) *iso (ic (& L) (CS∋L top) (subst (λ k → L ⊆ k) (sym *iso) ( λ x → x))) + ; eq← = λ {x} lx c cs l⊆c → l⊆c lx } ) + -- Subbase P -- A set of countable intersection of P will be a base (x ix an element of the base) @@ -290,29 +296,30 @@ -- FIP is UFL FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP - → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FL : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F FL uf -FIP→UFLP {P} TP fip {L} LP F FL uf = record { limit = FIP.limit fip fip00 CFP fip01 ; P∋limit = FIP.L∋limit fip fip00 CFP fip01 ; is-limit = fip02 } + → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F FP uf +FIP→UFLP {P} TP fip {L} LP F FP uf = record { limit = FIP.limit fip fip00 CFP fip01 ; P∋limit = FIP.L∋limit fip fip00 CFP fip01 ; is-limit = fip02 } where + fip03 : {z : HOD} → filter F ∋ z → z ⊆ P + fip03 {z} fz {x} zx = LP ( f⊆L F fz ) x (subst (λ k → odef k x) (sym *iso) zx ) CF : Ordinal CF = & ( Replace' (filter F) (λ z fz → Cl TP z (fip03 fz)) ) where - fip03 : {z : HOD} → filter F ∋ z → z ⊆ P - fip03 {z} fz {x} zx with LP ( f⊆L F fz ) - ... | pw = pw x (subst (λ k → odef k x) (sym *iso) zx ) - CFP : * CF ∋ P -- filter F ∋ P - CFP = ? + CFP : * CF ∋ P -- filter F ∋ P and Cl P ≡ P + CFP = subst₂ (λ j k → odef j k) (sym *iso) refl record { z = & P ; az = FP ; x=ψz = cong (&) fip04 } where + fip04 : P ≡ (Cl TP (* (& P)) (fip03 (subst (odef (filter F)) (sym &iso) FP))) + fip04 = ==→o≡ ( record { eq→ = ? ; eq← = ? } ) fip00 : * CF ⊆ CS TP -- replaced fip00 = ? fip01 : {C x : Ordinal} → * C ⊆ * CF → Subbase (* C) x → o∅ o< x fip01 {C} {x} CCF (gi Cx) = ? -- filter is proper .i.e it contains no od∅ fip01 {C} {.(& (* _ ∩ * _))} CCF (g∩ sb sb₁) = ? - fip02 : {o : Ordinal} → odef (OS TP) o → odef (* o) (FIP.limit fip fip00 ? fip01) → * o ⊆ filter F + fip02 : {o : Ordinal} → odef (OS TP) o → odef (* o) (FIP.limit fip fip00 CFP fip01) → * o ⊆ filter F fip02 {p} oo ol = ? where - fip04 : odef ? (FIP.limit fip fip00 ? fip01) + fip04 : odef ? (FIP.limit fip fip00 CFP fip01) fip04 = FIP.is-limit fip fip00 CFP fip01 ? UFLP→FIP : {P : HOD} (TP : Topology P) → - ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FL : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F ? uf ) → FIP TP + ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F FP uf ) → FIP TP UFLP→FIP {P} TP uflp = record { limit = ? ; is-limit = ? } -- Product of UFL has limit point (Tychonoff)