Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 481:263d2d1a000e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 03 Apr 2022 18:51:58 +0900 |
parents | 6c22ee73ff06 |
children | ce4f3f180b8e |
files | src/filter.agda src/zorn.agda |
diffstat | 2 files changed, 32 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Sun Apr 03 17:53:13 2022 +0900 +++ b/src/filter.agda Sun Apr 03 18:51:58 2022 +0900 @@ -173,13 +173,11 @@ genf : Filter LP generic : (D : Dense LP ) → M ∋ Dense.dense D → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ ) -open import zorn - record MaximumFilter {L P : HOD} (LP : L ⊆ Power P) : Set (suc n) where field mf : Filter LP proper : ¬ (filter mf ∋ od∅) - is-maximum : ( f : Filter LP ) → ¬ (filter f ∋ od∅) → ¬ ( (¬ filter mf ≡ filter f ) ∧ (filter mf ⊆ filter f )) + is-maximum : ( f : Filter LP ) → ¬ (filter f ∋ od∅) → ¬ filter mf ≡ filter f → ¬ ( filter mf ⊆ filter f ) max→ultra : {L P : HOD} (LP : L ⊆ Power P) → (mx : MaximumFilter LP ) → ultra-filter ( MaximumFilter.mf mx ) max→ultra {L} {P} LP mx = record { proper = MaximumFilter.proper mx ; ultra = ultra } where @@ -189,7 +187,7 @@ ... | yes y = case1 y ... | no np with ∋-p (filter mf) (P \ p) ... | yes y = case2 y - ... | no n-p = ⊥-elim (MaximumFilter.is-maximum mx FisFilter FisProper ⟪ {!!} , record { incl = FisGreater } ⟫ ) where + ... | no n-p = ⊥-elim (MaximumFilter.is-maximum mx FisFilter FisProper {!!} record { incl = FisGreater } ) where Y : (y : Ordinal) → (my : odef (filter mf) y ) → HOD Y y my = record { od = record { def = λ x → (x ≡ y) ∨ (x ≡ & p) } ; odmax = & L ; <odmax = {!!} } F : HOD @@ -206,8 +204,10 @@ open import Relation.Binary.Definitions ultra→max : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) - → (F U : Filter LP) → ¬ (filter F ∋ od∅) → ultra-filter U → ¬ filter U ≡ filter F → ¬ (filter U ⊆ filter F ) -ultra→max {L} {P} LP NG CAP F U Prop u U≠F U⊆F = ⊥-elim ( Prop f0 ) where + → (U : Filter LP) → ultra-filter U → MaximumFilter LP +ultra→max {L} {P} LP NG CAP U u = record { mf = U ; proper = ultra-filter.proper u ; is-maximum = is-maximum } where + is-maximum : (F : Filter LP) → (¬ (filter F ∋ od∅)) → ( U≠F : ¬ filter U ≡ filter F ) → (U⊆F : filter U ⊆ filter F ) → ⊥ + is-maximum F Prop U≠F U⊆F = Prop f0 where GT : HOD GT = record { od = record { def = λ x → odef (filter F) x ∧ (¬ odef (filter U) x) } ; odmax = {!!} ; <odmax = {!!} } GT≠∅ : ¬ (GT =h= od∅) @@ -229,3 +229,28 @@ f0 : filter F ∋ od∅ f0 = subst (λ k → odef (filter F) k ) (trans (cong (&) ∩-comm) (cong (&) [a-b]∩b=0 ) ) ( filter2 F F∋p F∋-p ( CAP {!!} {!!}) ) +open import zorn + +MaximumFilterExist : {L P : HOD} (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → ({p q : HOD} → L ∋ p → L ∋ q → L ∋ (p ∩ q)) + → (F : Filter LP) → o∅ o< & L → o∅ o< & (filter F) → (¬ (filter F ∋ od∅)) → MaximumFilter LP +MaximumFilterExist {L} {P} LP NEG CAP F 0<L 0<F Fprop = record { mf = {!!} ; proper = {!!} ; is-maximum = {!!} } where + _⊆'_ : ( A B : HOD ) → Set n + _⊆'_ A B = (x : Ordinal ) → odef A x → odef B x + FL : HOD + FL = {!!} + 0<FL : o∅ o< & FL + 0<FL = {!!} + PO : PartialOrderSet O FL _⊆'_ + PO = {!!} + supP : (B : HOD) → B ⊆ FL → TotalOrderSet O B _⊆'_ → SUP O FL B _⊆'_ + supP B B⊆FL cmp = record { sup = sup ; A∋maximal = A∋maximal ; x≤sup = x≤sup } where + sup : HOD + sup = {!!} + A∋maximal : B ∋ sup + A∋maximal = {!!} + x≤sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x ⊆' sup ) + x≤sup = {!!} + maximum : Maximal O FL _⊆'_ + maximum = Zorn-lemma O {FL} {_⊆'_} 0<FL {!!} {!!} + +
--- a/src/zorn.agda Sun Apr 03 17:53:13 2022 +0900 +++ b/src/zorn.agda Sun Apr 03 18:51:58 2022 +0900 @@ -158,7 +158,7 @@ total : TotalOrderSet Bx _<_ total ex ey with is-elm ex | is-elm ey ... | case1 eq | case1 eq1 = tri≈ {!!} {!!} {!!} - ... | case1 x | case2 x₁ = tri< {!!} {!!} {!!} + ... | case1 x | case2 x₁ = tri< {!!} {!!} {!!} ... | case2 x | case1 x₁ = {!!} ... | case2 x | case2 x₁ = ZChain.total zc1 (me x) (me x₁) ind nomx x prev | no ¬ox with trio< (& A) x --- limit ordinal case