Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 862:269467244745
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Sep 2022 08:19:50 +0900 |
parents | 4e60b42b83a3 |
children | f5fc3f5f618f |
files | src/zorn.agda |
diffstat | 1 files changed, 16 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Thu Sep 08 14:33:08 2022 +0900 +++ b/src/zorn.agda Fri Sep 09 08:19:50 2022 +0900 @@ -882,22 +882,22 @@ ... | case1 pr = no-extension (case2 pr) -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax ) ... | case1 is-sup = -- x is a sup of zc - record { supf = supf1 + record { supf = supf1 ; supf-max = ? ; csupf = {!!} ; sup=u = {!!} ; supf-mono = {!!} ; sup = {!!} ; supf-is-sup = {!!} } where supf1 : Ordinal → Ordinal supf1 z with trio< z px - ... | tri< a ¬b ¬c = ZChain.supf zc z - ... | tri≈ ¬a b ¬c = ZChain.supf zc z - ... | tri> ¬a ¬b c = x + ... | tri< a ¬b ¬c = ZChain.supf zc z + ... | tri≈ ¬a b ¬c = ZChain.supf zc z + ... | tri> ¬a ¬b c = x --- SUP A (UnionCF A f mf ay supf0 px) ≡ SUP A (UnionCF A f mf ay supf1 px) pchainx : HOD pchainx = UnionCF A f mf ay supf1 x - supf0px=x : supf0 px ≡ x - supf0px=x = ? where + supf0px=x : (ax : odef A x) → IsSup A (ZChain.chain zc ) ax → x ≡ & (SUP.sup (ZChain.sup zc o≤-refl ) ) + supf0px=x is-sup = ? where zc50 : supf0 px ≡ & (SUP.sup (ZChain.sup zc o≤-refl ) ) - zc50 = ZChain.spuf-is-sup zc ? + zc50 = ZChain.supf-is-sup zc ? supf-monox : {a b : Ordinal } → a o≤ b → supf1 a o≤ supf1 b supf-monox {i} {j} i≤j with trio< i px | trio< j px @@ -921,6 +921,15 @@ ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> x≤z (subst (λ k → k o< x ) (sym b) (pxo<x op))) ... | tri> ¬a ¬b c = refl + pchain0=x : UnionCF A f mf ay supf0 px ≡ UnionCF A f mf ay supf1 px + pchain0=x = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where + zc10 : {z : Ordinal} → OD.def (od pchain) z → odef (UnionCF A f mf ay supf1 px) z + zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ + zc10 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ = ⟪ az , ch-is-sup u1 ? ? ? ⟫ + zc11 : {z : Ordinal} → odef (UnionCF A f mf ay supf1 px) z → OD.def (od pchain) z + zc11 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ + zc11 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ = ? + csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 (supf1 b)) (supf1 b) csupf {b} b≤x with zc04 b≤x ... | case2 b=x = ⟪ ? , ch-is-sup x ? ? (init ? ? ) ⟫