Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 544:27bb51b7f012
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 27 Apr 2022 05:19:31 +0900 |
parents | f0b45446c7ea |
children | f8eb56442f2c |
files | src/zorn.agda |
diffstat | 1 files changed, 12 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Apr 27 04:04:30 2022 +0900 +++ b/src/zorn.agda Wed Apr 27 05:19:31 2022 +0900 @@ -361,10 +361,19 @@ chain = ZChain.chain zc0 zc7 : ZChain A sa f mf supO x zc7 with ODC.∋-p O (ZChain.chain zc0) (* ( f x ) ) - ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} - ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } -- no extention + ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = zc20 (ZChain.f-next zc0) + ; f-immediate = ZChain.f-immediate zc0 ; ¬chain∋x>z = z22 ; chain∋x = ZChain.chain∋x zc0 + ; is-max = λ za ba a<x → zc20 (λ za a<x → ZChain.is-max zc0 za ba a<x ) za a<x } where -- no extention + z22 : {a : Ordinal} → x o< osuc a → ¬ odef (ZChain.chain zc0) a + z22 {a} x<oa = ZChain.¬chain∋x>z zc0 (ordtrans (subst (λ k → px o< k ) (Oprev.oprev=x op) <-osuc ) x<oa ) + zc20 : {P : Ordinal → Set n} → ({a : Ordinal} → odef (ZChain.chain zc0) a → a o< px → P a) + → {a : Ordinal} → (za : odef (ZChain.chain zc0) a ) → (a<x : a o< x) → P a + zc20 {P} prev {a} za a<x with trio< a px + ... | tri< a₁ ¬b ¬c = prev za a₁ + ... | tri≈ ¬a b ¬c = ⊥-elim ( ZChain.¬chain∋x>z zc0 (subst (λ k → k o< osuc a) b <-osuc ) za ) + ... | tri> ¬a ¬b c = ⊥-elim ( ZChain.¬chain∋x>z zc0 (ordtrans c <-osuc ) za ) ... | no not = record { chain = zc5 ; chain⊆A = ⊆-zc5 - ; f-total = zc6 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = {!!} } where + ; f-total = zc6 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = case1 (ZChain.chain∋x zc0) ; ¬chain∋x>z = {!!} ; is-max = {!!} } where -- extend with f x -- cahin ∋ y ∧ chain ∋ f y ∧ x ≡ f ( f y ) zc5 : HOD zc5 = record { od = record { def = λ z → odef (ZChain.chain zc0) z ∨ (z ≡ f x) } ; odmax = & A ; <odmax = {!!} }