Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1330:27ce91231127
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 13 Jun 2023 11:47:55 +0900 |
parents | 75894c1665f7 |
children | 97ea311161ba |
files | src/bijection.agda |
diffstat | 1 files changed, 15 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Tue Jun 13 11:22:05 2023 +0900 +++ b/src/bijection.agda Tue Jun 13 11:47:55 2023 +0900 @@ -778,29 +778,22 @@ flen = Data.List.Fresh.length len=n : flen (FLany.flist fa) ≡ suc n len=n = ? - fli : FL fm → ℕ + fli : {n : ℕ } → FL n → ℕ fli (ca<n i x) = i - flist-top : (fl : FList fm) → 0 < flen fl → ℕ - flist-top [] () - flist-top (cons (ca<n i x₁) fl x) _ = fun→ cn (g (f (fun← an i))) - flist-2nd : (fl : FList fm) → 1 < flen fl → ℕ - flist-2nd [] () - flist-2nd (cons (ca<n i x₁) [] x) (s≤s ()) -- = fun→ cn (g (f (fun← an i))) - flist-2nd (cons (ca<n i ai<m) (cons j fl frj) fri) (s≤s 0<fl) = fun→ cn (g (f (fun← an (fli j)))) - flist-last : (fl : FList fm) → 0 < flen fl → ℕ - flist-last (cons i [] x) 0<fl = fun→ cn (g (f (fun← an (fli i)))) - flist-last (cons i (cons j fl x) y) 0<fl = flist-last (cons j fl x) cl04 where - cl04 : 0 < flen (cons j fl x) - cl04 = ≤-trans (s≤s z≤n) a<sa - cl00 : (fl : FL fm) → suc (count-A (fli fl)) ≡ count-A (suc (fli fl)) - cl00 = ? - cl01 : (fl : FList fm) → (1<fl : 1 < flen fl ) → flist-top fl (<-trans a<sa 1<fl) < flist-2nd fl 1<fl - cl01 = ? - n<ca : (fl : FList fm) → flen fl ≤ count-A (flist-last fl ? ) - n<ca [] = z≤n - n<ca (cons (ca<n i fi<fm) fl fr) = ? where - cl02 : flen fl ≤ count-A (flist-last fl ? ) - cl02 = n<ca fl + c : {n : ℕ} → (fl : FList n) → (i : ℕ) → i < flen fl → ℕ + c (cons i [] x) j <fl = fli i + c (cons i (cons j fl x) y) zero 0<fl = fun→ cn (g (f (fun← an (fli j)))) + c (cons i (cons j fl x) y) (suc k) 0<fl = c (cons j fl x) k cl04 where + cl04 : k < flen (cons j fl x) + cl04 = ? -- ≤-trans (s≤s z≤n) a<sa + n<ca : (fl : FList fm) → (i : ℕ) → i ≤ flen fl → i + count-A (c fl 0 ?) ≤ count-A (c fl i ? ) + n<ca [] i i<fl = ? + n<ca (cons (ca<n j fi<fm) fl fr) zero i<fl = ? + n<ca (cons (ca<n j fi<fm) fl fr) (suc i) i<fl = cl03 where + cl02 : i + count-A (c fl 0 ?) ≤ count-A (c fl i ? ) + cl02 = n<ca fl i ? + cl03 : (suc i) + count-A (c (cons (ca<n j fi<fm) fl fr) 0 ?) ≤ count-A (c (cons (ca<n j fi<fm) fl fr) (suc i) ? ) + cl03 = ? record CountB (n : ℕ) : Set where