Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1232:2839815e7b50
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 08 Mar 2023 18:47:07 +0900 |
parents | d20199031218 |
children | 61fc99e65055 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 3 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Wed Mar 08 17:36:15 2023 +0900 +++ b/src/Tychonoff.agda Wed Mar 08 18:47:07 2023 +0900 @@ -505,9 +505,11 @@ Rx = Replace' (* z) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) xy))) RxQ∋z : * z ⊆ ZFP Rx Q RxQ∋z {w} zw = subst (λ k → ZFProduct Rx Q k ) ty70 ( ab-pair record { z = w ; az = zw ; x=ψz = refl } (zp2 (f⊆L F az _ zw ) ) ) where + a = F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw) + b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw ) ty70 : & < * (& (* (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw))))) , * (zπ2 (f⊆L F az w zw)) > ≡ w - ty70 = ? + ty70 = trans (cong₂ (λ j k → & < * j , k > ) (trans &iso (cong zπ1 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b )))) refl ) (trans ? (zp-iso (f⊆L F az _ zw ) )) ty71 : * z ⊆ ZFP (* x) Q ty71 = subst (λ k → * z ⊆ ZFP k Q) ty72 RxQ∋z where ty72 : Rx ≡ * x