Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 210:2c7d45734e3b
axiom of choice from exclusive middle done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2019 12:23:07 +0900 |
parents | e59e682ad120 |
children | 6bb5d57c9561 0a1804cc9d0a |
files | OD.agda |
diffstat | 1 files changed, 13 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Thu Aug 01 10:22:16 2019 +0900 +++ b/OD.agda Thu Aug 01 12:23:07 2019 +0900 @@ -559,6 +559,9 @@ lx ≡ ly → ly ≡ lv (od→ord z) → ψ z lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl) + --- + --- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice + --- record choiced {n : Level} ( X : OD {suc n}) : Set (suc (suc n)) where field a-choice : OD {suc n} @@ -589,9 +592,11 @@ caseΦ lx prev | no ¬p = lemma where lemma1 : (x : Ordinal) → (((Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X) lemma1 x with trio< x (ordinal lx (Φ lx)) - lemma1 x | tri< a ¬b ¬c with prev x a - lemma1 x | tri< a ¬b ¬c | case1 not_found = case1 {!!} + lemma1 x | tri< a ¬b ¬c with prev (osuc x) (lemma2 a) where + lemma2 : x o< (ordinal lx (Φ lx)) → osuc x o< ordinal lx (Φ lx) + lemma2 (case1 lt) = case1 lt lemma1 x | tri< a ¬b ¬c | case2 found = case2 found + lemma1 x | tri< a ¬b ¬c | case1 not_found = case1 ( λ lt df → not_found x <-osuc df ) lemma1 x | tri≈ ¬a refl ¬c = case1 ( λ lt → ⊥-elim (o<¬≡ refl lt )) lemma1 x | tri> ¬a ¬b c = case1 ( λ lt → ⊥-elim (o<> lt c )) lemma : ((x : Ordinal) → (Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X @@ -610,5 +615,10 @@ caseOSuc lx x (case2 found) | no ¬p = case2 found have_to_find : choiced X have_to_find with lemma-ord (od→ord X ) - have_to_find | t = dont-or t {!!} + have_to_find | t = dont-or t ¬¬X∋x where + ¬¬X∋x : ¬ ((x : Ordinal) → (Suc (lv x) ≤ lv (od→ord X)) ∨ (ord x d< ord (od→ord X)) → def X x → ⊥) + ¬¬X∋x nn = not record { + eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) + ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) + }