Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1435:2d7341d4a90a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jul 2023 12:08:54 +0900 |
parents | 52853b81df80 |
children | d6a0ecafff80 |
files | src/cardinal.agda |
diffstat | 1 files changed, 26 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Sun Jul 02 10:35:37 2023 +0900 +++ b/src/cardinal.agda Sun Jul 02 12:08:54 2023 +0900 @@ -366,7 +366,7 @@ b∋Uf1 x record { y = y ; ay = ay ; x=fy = x=fy } = subst (λ k → odef (* b) k ) (sym x=fy) (b∋fab y (a∋gfImage ay)) Uf1 : (x : Ordinal) → IsImage0 UC (* b) FA x → Ordinal - Uf1 x lt = fba x (b∋Uf1 x lt) + Uf1 x record { y = y ; ay = ay ; x=fy = x=fy } = y be04 : {x : Ordinal } → (cx : odef (* (& UC)) x) → odef (* (& (Image (& UC) (Injection-⊆ UC⊆a f)))) (fU x cx) be04 {x} cx = subst (λ k → odef k (fU x cx) ) (sym *iso) be06 where @@ -426,22 +426,39 @@ cc21 : {x : Ordinal } → (lt : odef (* a) x) → CC1 (fab x lt ) cc21 {x} lt = cc1 (fab x lt) + UC∋Uf1 : {x : Ordinal } → (lt : odef fUC x) → odef UC (Uf1 x lt ) + UC∋Uf1 {x} record { y = y ; ay = ay ; x=fy = x=fy } = ay + + fU-iso1 : {x : Ordinal } → (lt : odef fUC x) → fU1 (Uf1 x lt) (UC∋Uf1 lt) ≡ x + fU-iso1 {x} record { y = y ; ay = (a-g ax ¬ib) ; x=fy = x=fy } = trans (fab-eq refl) (sym x=fy) + fU-iso1 {x} record { y = y ; ay = (next-gf record { y = y₁ ; ay = ay₁ ; x=fy = x=fy₁ } ay) ; x=fy = x=fy } = trans (fab-eq refl) (sym x=fy) + + fU-iso0 : {x : Ordinal } → (lt : odef UC x) → Uf1 (fU1 x lt) record { y = _ ; ay = lt ; x=fy = refl } ≡ x + fU-iso0 {x} (a-g ax ¬ib) = ? + fU-iso0 {x} (next-gf record { y = y ; ay = ay ; x=fy = x=fy } lt) = ? + bi-UC : HODBijection UC fUC bi-UC = record { fun← = λ x lt → fU1 x lt ; fun→ = λ x lt → Uf1 x lt - ; funB = λ x lt → ? - ; funA = λ x lt → ? - ; fiso← = λ x lt → ? - ; fiso→ = λ x lt → ? + ; funB = λ x lt → record { y = _ ; ay = lt ; x=fy = refl } + ; funA = λ x lt → UC∋Uf1 lt + ; fiso← = λ x lt → fU-iso1 lt + ; fiso→ = λ x lt → fU-iso0 lt } + b-FUC∋g⁻¹ : {x : Ordinal } → (lt : odef a-UC x )→ odef b-fUC (g⁻¹ (proj1 lt) (nimg (proj1 lt) (proj2 lt))) + b-FUC∋g⁻¹ {x} ⟪ ax , ngfix ⟫ = ⟪ b∋g⁻¹ ax (nimg ax ngfix) , cc11-case2 ax ngfix ⟫ + + a-UC∋g : {x : Ordinal } → (lt : odef b-fUC x) → odef a-UC (fba x (proj1 lt )) + a-UC∋g {x} ⟪ bx , ¬img ⟫ = ⟪ a∋fba x bx , cc10-case2 bx ¬img ⟫ + bi-fUC : HODBijection a-UC b-fUC bi-fUC = record { fun← = λ x lt → g⁻¹ (proj1 lt) (nimg (proj1 lt) (proj2 lt)) ; fun→ = λ x lt → fba x (proj1 lt) - ; funB = λ x lt → ? - ; funA = λ x lt → ? + ; funB = λ x lt → b-FUC∋g⁻¹ lt + ; funA = λ x lt → a-UC∋g lt ; fiso← = λ x lt → ? ; fiso→ = λ x lt → ? } @@ -468,7 +485,7 @@ cc10 : {x : Ordinal} → (bx : odef (* b) x) → (cc1 : CC1 x ) → CC0 (h⁻¹ bx cc1 ) cc10 {x} bx (case1 record { y = y ; ay = ay ; x=fy = x=fy }) = - case1 (next-gf record { y = _ ; ay = a∋gfImage ay ; x=fy = fba-eq x=fy } ay ) + case1 (next-gf record { y = _ ; ay = a∋gfImage ay ; x=fy = ? } ay ) cc10 {x} bx (case2 x₁) = case2 (cc10-case2 bx x₁ ) cc11 : {x : Ordinal} → (ax : odef (* a) x) → (cc0 : CC0 x ) → CC1 (h ax cc0 ) @@ -480,7 +497,7 @@ be70 x ax ( case2 ncn ) = b∋g⁻¹ ax (nimg ax ncn) be71 : (x : Ordinal) (bx : odef (* b) x) → (or : CC1 x) → odef (* a) (h⁻¹ bx or ) - be71 x bx ( case1 cn ) = subst (λ k → odef (* a) k) (fba-eq refl) (a∋fba x bx ) + be71 x bx ( case1 cn ) = ? be71 x bx ( case2 ncn ) = a∋fba x bx be71-1 : (x : Ordinal) (bx : odef (* b) x)