Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1203:2f09ce1dd2a1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Mar 2023 18:03:04 +0900 |
parents | d6781ad8149e |
children | 4d894c166762 |
files | src/Tychonoff.agda |
diffstat | 1 files changed, 15 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Tychonoff.agda Thu Mar 02 12:42:22 2023 +0800 +++ b/src/Tychonoff.agda Thu Mar 02 18:03:04 2023 +0900 @@ -85,7 +85,7 @@ * o∅ ≡⟨ o∅≡od∅ ⟩ od∅ ∎ ) (sym &iso) xx ) ) where open ≡-Reasoning ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) -... | tri> ¬a ¬b 0<P = record { limit = λ CSX fip → UFLP.limit (uflp (F CSX fip) (ultraf CSX fip)) ; is-limit = ? } where +... | tri> ¬a ¬b 0<P = record { limit = λ CSX fip → limit CSX fip ; is-limit = ? } where fip : {X : Ordinal} → * X ⊆ CS TP → Set n fip {X} CSX = {x : Ordinal} → Subbase (* X) x → o∅ o< x N : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip CSX → HOD @@ -162,10 +162,22 @@ -- so i has a limit as a limit of UIP -- limit : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal - limit {X} CSX fp = UFLP.limit ( uflp ( mf CSX fp ) (ultraf CSX fp)) + limit {X} CSX fp with trio< o∅ X + ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf CSX fp ) (ultraf CSX fp)) + ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) ( begin + * X ≡⟨ cong (*) (sym 0=X) ⟩ + * o∅ ≡⟨ o∅≡od∅ ⟩ + od∅ ∎ ) (sym &iso) ? ) ) where open ≡-Reasoning + ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) uf02 : {X v : Ordinal} → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Neighbor TP (limit CSX fp) v → * v ⊆ filter ( mf CSX fp ) - uf02 {X} {v} CSX fp nei {x} vx = UFLP.is-limit ( uflp ( mf CSX fp ) (ultraf CSX fp)) nei vx + uf02 {X} {v} CSX fp nei {x} vx with trio< o∅ X + ... | tri< 0<X ¬b ¬c = UFLP.is-limit ( uflp ( mf CSX fp ) (ultraf CSX fp)) nei vx + ... | tri≈ ¬a 0=X ¬c = ⊥-elim ( ¬∅∋ (subst₂ (λ j k → odef j k ) ( begin + * X ≡⟨ cong (*) (sym 0=X) ⟩ + * o∅ ≡⟨ o∅≡od∅ ⟩ + od∅ ∎ ) (sym &iso) ? ) ) where open ≡-Reasoning + ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) -- -- the limit is an limit of entire elements of X --