Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1143:2fe1bc2b962f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 15 Jan 2023 19:30:21 +0900 |
parents | 7b924ef65373 |
children | 73b256c5474b |
files | src/Topology.agda |
diffstat | 1 files changed, 58 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Sun Jan 15 09:05:22 2023 +0900 +++ b/src/Topology.agda Sun Jan 15 19:30:21 2023 +0900 @@ -12,6 +12,7 @@ open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core +open import Relation.Binary.Definitions open import Relation.Binary.PropositionalEquality import BAlgebra open BAlgebra O @@ -214,15 +215,16 @@ record FIP {L : HOD} (top : Topology L) : Set n where field - limit : {X : Ordinal } → * X ⊆ CS top → * X ∋ L + limit : {X : Ordinal } → * X ⊆ CS top → ( { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) → Ordinal - is-limit : {X : Ordinal } → (CX : * X ⊆ CS top ) → (XL : * X ∋ L ) + is-limit : {X : Ordinal } → (CX : * X ⊆ CS top ) → ( fip : { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) - → {x : Ordinal } → odef (* X) x → odef (* x) (limit CX XL fip) - L∋limit : {X : Ordinal } → (CX : * X ⊆ CS top ) → (XL : * X ∋ L) + → {x : Ordinal } → odef (* X) x → odef (* x) (limit CX fip) + L∋limit : {X : Ordinal } → (CX : * X ⊆ CS top ) → ( fip : { C : Ordinal } { x : Ordinal } → * C ⊆ * X → Subbase (* C) x → o∅ o< x ) - → odef L (limit CX XL fip) - L∋limit {X} CX XL fip = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX XL)) (is-limit CX XL fip XL) + → {x : Ordinal } → odef (* X) x + → odef L (limit CX fip) + L∋limit {X} CX fip {x} xx = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX xx)) (is-limit CX fip xx) -- Compact @@ -244,27 +246,60 @@ CX : {X : Ordinal} → * X ⊆ OS top → Ordinal CX {X} ox = & ( Replace' (* X) (λ z xz → L \ z )) CCX : {X : Ordinal} → (os : * X ⊆ OS top) → * (CX os) ⊆ CS top - CCX {X} ox = {!!} + CCX {X} os {x} ox with subst (λ k → odef k x) *iso ox + ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ fip05 , fip06 ⟫ where -- x ≡ & (L \ * z) + fip07 : z ≡ & (L \ * x) + fip07 = subst₂ (λ j k → j ≡ k) &iso (cong (λ k → & ( L \ k )) (cong (*) (sym x=ψz))) ( cong (&) ( ==→o≡ record { eq→ = fip09 ; eq← = fip08 } )) where + fip08 : {x : Ordinal} → odef L x ∧ (¬ odef (* (& (L \ * z))) x) → odef (* z) x + fip08 {x} ⟪ Lx , not ⟫ with subst (λ k → (¬ odef k x)) *iso not -- ( odef L x ∧ odef (* z) x → ⊥) → ⊥ + ... | Lx∧¬zx = ODC.double-neg-elim O ( λ nz → Lx∧¬zx ⟪ Lx , nz ⟫ ) + fip09 : {x : Ordinal} → odef (* z) x → odef L x ∧ (¬ odef (* (& (L \ * z))) x) + fip09 {w} zw = ⟪ os⊆L top (os (subst (λ k → odef (* X) k) (sym &iso) az)) zw , subst (λ k → ¬ odef k w) (sym *iso) fip10 ⟫ where + fip10 : ¬ (odef (L \ * z) w) + fip10 ⟪ Lw , nzw ⟫ = nzw zw + fip06 : odef (OS top) (& (L \ * x)) + fip06 = os ( subst (λ k → odef (* X) k ) fip07 az ) + fip05 : * x ⊆ L + fip05 {w} xw = proj1 ( subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso ) xw ) -- CX has finite intersection CXfip : {X : Ordinal } → * X ⊆ OS top → Set n CXfip {X} ox = { x C : Ordinal } → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x - Cex : {X : Ordinal } → * X ⊆ OS top → HOD - Cex {X} ox = record { od = record { def = λ C → { x : Ordinal } → * C ⊆ * (CX ox) → Subbase (* C) o∅ } - ; odmax = osuc ( & (Power L)) ; <odmax = {!!} } - -- a counter example of fip , some CX has no finite intersection + -- + -- X covres L means Intersection of (CX X) contains nothing + -- then some finite Intersection of (CX X) contains nothing ( contraposition of FIP ) + -- it means there is a finite cover + -- + record CFIP (x : Ordinal) : Set n where + field + is-CS : * x ⊆ CS top + y : Ordinal + ¬fip : {y : Ordinal } → Subbase (* x) y → o∅ ≡ y + Cex : HOD + Cex = record { od = record { def = λ x → CFIP x } ; odmax = osuc (& (CS top)) ; <odmax = λ {x} lt → + subst₂ (λ j k → j o≤ k ) &iso refl ( ⊆→o≤ (CFIP.is-CS lt )) } cex : {X : Ordinal } → * X ⊆ OS top → * X covers L → Ordinal - cex {X} ox oc = & ( ODC.minimal O (Cex ox) fip00) where - fip00 : ¬ ( Cex ox =h= od∅ ) - fip00 cex=0 = fip03 {!!} {!!} where + cex {X} ox oc = & ( ODC.minimal O Cex fip00) where + fip00 : ¬ ( Cex =h= od∅ ) + fip00 cex=0 = fip03 (FIP.is-limit fip (CCX ox) fip02 ?) {!!} where fip03 : {x z : Ordinal } → odef (* x) z → (¬ odef (* x) z) → ⊥ fip03 {x} {z} xz nxz = nxz xz fip02 : {C x : Ordinal} → * C ⊆ * (CX ox) → Subbase (* C) x → o∅ o< x - fip02 = {!!} + fip02 {C} {x} C<CX sc with trio< x o∅ + ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) + ... | tri> ¬a ¬b c = c + ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; y = x ; ¬fip = ? } )) where + fip10 : * C ⊆ CS top + fip10 {w} cw with subst (λ k → odef k w) *iso ( C<CX cw ) + ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ ? , ? ⟫ fip01 : Ordinal - fip01 = FIP.limit fip (CCX ox) {!!} fip02 + fip01 = FIP.limit fip (CCX ox) fip02 + fip05 : odef (CS top) fip01 + fip05 = ? + fip04 : Ordinal + fip04 = cover oc (cs⊆L top (subst₂ (λ j k → odef j k ) refl (sym &iso) fip05) (FIP.is-limit fip (CCX ox) ? ?) ) ¬CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → * (cex ox oc) ⊆ * (CX ox) → Subbase (* (cex ox oc)) o∅ ¬CXfip {X} ox oc = {!!} where - fip04 : odef (Cex ox) (cex ox oc) + fip04 : odef Cex (cex ox oc) fip04 = {!!} -- this defines finite cover finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal @@ -298,12 +333,13 @@ UFLP→FIP : {P : HOD} (TP : Topology P) → {L : HOD} (LP : L ⊆ Power P ) → ( (F : Filter {L} {P} LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP TP LP F FP UF ) → FIP TP UFLP→FIP {P} TP {L} LP uflp = record { limit = uf00 ; is-limit = {!!} } where - fip : {X : Ordinal} → * X ⊆ CS TP → * X ∋ P → Set n - fip {X} CSX XP = {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x - F : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (XP : * X ∋ P ) → fip {X} CSX XP → Filter {L} {P} LP + fip : {X : Ordinal} → * X ⊆ CS TP → Set n + fip {X} CSX = {C x : Ordinal} → * C ⊆ * X → Subbase (* C) x → o∅ o< x + F : Filter {L} {P} LP F = ? - uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → (XP : * X ∋ P ) → fip {X} CSX XP → Ordinal - uf00 = ? + uf00 : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal + uf00 {X} CSX fip = UFLP.limit ( uflp F ? (F→ultra LP ? ? F ? ? ? ) ) + FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (FP : filter F ∋ P) (UF : ultra-filter F ) → UFLP {P} TP {L} LP F FP UF