Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 269:30e419a2be24
disjunction and conjunction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Oct 2019 16:42:42 +0900 |
parents | 7b4a66710cdd |
children | fc3d4bc1dc5e |
files | filter.agda ordinal.agda zf.agda |
diffstat | 3 files changed, 90 insertions(+), 33 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Mon Sep 30 21:22:07 2019 +0900 +++ b/filter.agda Sun Oct 06 16:42:42 2019 +0900 @@ -26,11 +26,56 @@ A ∩ B = record { def = λ x → def A x ∧ def B x } _∪_ : ( A B : OD ) → OD -A ∪ B = Union (A , B) +A ∪ B = record { def = λ x → def A x ∨ def B x } + +∪-Union : { A B : OD } → Union (A , B) ≡ ( A ∪ B ) +∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (Union (A , B)) x → def (A ∪ B) x + lemma1 {x} lt = lemma3 lt where + lemma4 : {y : Ordinal} → def (A , B) y ∧ def (ord→od y) x → ¬ (¬ ( def A x ∨ def B x) ) + lemma4 {y} z with proj1 z + lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → def k x ) oiso (proj2 z)) ) + lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → def k x ) oiso (proj2 z)) ) + lemma3 : (((u : Ordinals.ord O) → ¬ def (A , B) u ∧ def (ord→od u) x) → ⊥) → def (A ∪ B) x + lemma3 not = double-neg-eilm (FExists _ lemma4 not) + lemma2 : {x : Ordinal} → def (A ∪ B) x → def (Union (A , B)) x + lemma2 {x} (case1 A∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) A + (record { proj1 = case1 refl ; proj2 = subst (λ k → def A k) (sym diso) A∋x})) + lemma2 {x} (case2 B∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) B + (record { proj1 = case2 refl ; proj2 = subst (λ k → def B k) (sym diso) B∋x})) + +∩-Select : { A B : OD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B ) +∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → def (A ∩ B) x + lemma1 {x} lt = record { proj1 = proj1 lt ; proj2 = subst (λ k → def B k ) diso (proj2 (proj2 lt)) } + lemma2 : {x : Ordinal} → def (A ∩ B) x → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x + lemma2 {x} lt = record { proj1 = proj1 lt ; proj2 = + record { proj1 = subst (λ k → def A k) (sym diso) (proj1 lt) ; proj2 = subst (λ k → def B k ) (sym diso) (proj2 lt) } } + +dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) +dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (p ∩ (q ∪ r)) x → def ((p ∩ q) ∪ (p ∩ r)) x + lemma1 {x} lt with proj2 lt + lemma1 {x} lt | case1 q∋x = case1 ( record { proj1 = proj1 lt ; proj2 = q∋x } ) + lemma1 {x} lt | case2 r∋x = case2 ( record { proj1 = proj1 lt ; proj2 = r∋x } ) + lemma2 : {x : Ordinal} → def ((p ∩ q) ∪ (p ∩ r)) x → def (p ∩ (q ∪ r)) x + lemma2 {x} (case1 p∩q) = record { proj1 = proj1 p∩q ; proj2 = case1 (proj2 p∩q ) } + lemma2 {x} (case2 p∩r) = record { proj1 = proj1 p∩r ; proj2 = case2 (proj2 p∩r ) } + +dist-ord2 : {p q r : OD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r ) +dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (p ∪ (q ∩ r)) x → def ((p ∪ q) ∩ (p ∪ r)) x + lemma1 {x} (case1 cp) = record { proj1 = case1 cp ; proj2 = case1 cp } + lemma1 {x} (case2 cqr) = record { proj1 = case2 (proj1 cqr) ; proj2 = case2 (proj2 cqr) } + lemma2 : {x : Ordinal} → def ((p ∪ q) ∩ (p ∪ r)) x → def (p ∪ (q ∩ r)) x + lemma2 {x} lt with proj1 lt | proj2 lt + lemma2 {x} lt | case1 cp | _ = case1 cp + lemma2 {x} lt | _ | case1 cp = case1 cp + lemma2 {x} lt | case2 cq | case2 cr = case2 ( record { proj1 = cq ; proj2 = cr } ) record Filter ( L : OD ) : Set (suc n) where field - F1 : { p q : OD } → L ∋ p → ({ x : OD} → _⊆_ q p {x} ) → L ∋ q + F1 : { p q : OD } → L ∋ p → ({ x : OD} → _⊆_ p q {x} ) → L ∋ q F2 : { p q : OD } → L ∋ p → L ∋ q → L ∋ (p ∩ q) open Filter @@ -44,8 +89,6 @@ ultra-filter : {L : OD} → Filter L → {p : OD } → Set n ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) -postulate - dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} filter-lemma1 {L} P {p} {q} u lt with u p | u q @@ -61,10 +104,23 @@ F1 = {!!} ; F2 = {!!} } +record Dense (P : OD ) : Set (suc n) where + field + dense : OD + incl : { x : OD} → _⊆_ dense P {x} + dense-f : OD → OD + dense-p : { p x : OD} → P ∋ p → _⊆_ p (dense-f p) {x} + -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) infinite = ZF.infinite OD→ZF -Hω2 : Filter (Power (Power infinite)) -Hω2 = record { F1 = {!!} ; F2 = {!!} } +module in-countable-ordinal {n : Level} where + + import ordinal + open ordinal.C-Ordinal-with-choice + + Hω2 : Filter (Power (Power infinite)) + Hω2 = record { F1 = {!!} ; F2 = {!!} } +
--- a/ordinal.agda Mon Sep 30 21:22:07 2019 +0900 +++ b/ordinal.agda Sun Oct 06 16:42:42 2019 +0900 @@ -264,29 +264,30 @@ _∩_ = IsZF._∩_ isZF - ord-power-lemma : {a : Ordinal} → Power (Ord a) == Def (Ord a) - ord-power-lemma {a} = record { eq→ = left ; eq← = right } where - left : {x : Ordinal} → def (Power (Ord a)) x → def (Def (Ord a)) x - left {x} lt = lemma1 where - lemma : od→ord ((Ord a) ∩ (ord→od x)) o< sup-o ( λ y → od→ord ((Ord a) ∩ (ord→od y))) - lemma = sup-o< { λ y → od→ord ((Ord a) ∩ (ord→od y))} {x} - lemma1 : x o< sup-o ( λ x → od→ord ( ZFSubset (Ord a) (ord→od x ))) - lemma1 = {!!} - right : {x : Ordinal } → def (Def (Ord a)) x → def (Power (Ord a)) x - right {x} lt = def-subst {_} {_} {Power (Ord a)} {x} (IsZF.power← isZF (Ord a) (ord→od x) {!!}) refl diso - - uncountable : (a y : Ordinal) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od y) - uncountable a y = ⊆→o< lemma where - lemma-a : (x : OD ) → _⊆_ (ZFSubset (Ord a) (ord→od y)) (Ord a) {x} - lemma-a x lt = proj1 lt - lemma : (x : OD ) → _⊆_ (Ord ( od→ord (ZFSubset (Ord a) (ord→od y)))) (Ord a) {x} - lemma x = {!!} - - continuum-hyphotheis : (a : Ordinal) → (x : OD) → _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} - continuum-hyphotheis a x = lemma2 where - lemma1 : sup-o (λ x₁ → od→ord (ZFSubset (Ord a) (ord→od x₁))) o< osuc a - lemma1 = {!!} - lemma : _⊆_ (Def (Ord a)) (Ord (osuc a)) {x} - lemma = o<→c< lemma1 - lemma2 : _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} - lemma2 = subst ( λ k → _⊆_ k (Ord (osuc a)) {x} ) (sym (==→o≡ ord-power-lemma)) lemma +-- +-- ord-power-lemma : {a : Ordinal} → Power (Ord a) == Def (Ord a) +-- ord-power-lemma {a} = record { eq→ = left ; eq← = right } where +-- left : {x : Ordinal} → def (Power (Ord a)) x → def (Def (Ord a)) x +-- left {x} lt = lemma1 where +-- lemma : od→ord ((Ord a) ∩ (ord→od x)) o< sup-o ( λ y → od→ord ((Ord a) ∩ (ord→od y))) +-- lemma = sup-o< { λ y → od→ord ((Ord a) ∩ (ord→od y))} {x} +-- lemma1 : x o< sup-o ( λ x → od→ord ( ZFSubset (Ord a) (ord→od x ))) +-- lemma1 = {!!} +-- right : {x : Ordinal } → def (Def (Ord a)) x → def (Power (Ord a)) x +-- right {x} lt = def-subst {_} {_} {Power (Ord a)} {x} (IsZF.power← isZF (Ord a) (ord→od x) {!!}) refl diso +-- +-- uncountable : (a y : Ordinal) → Ord (osuc a) ∋ ZFSubset (Ord a) (ord→od y) +-- uncountable a y = ⊆→o< lemma where +-- lemma-a : (x : OD ) → _⊆_ (ZFSubset (Ord a) (ord→od y)) (Ord a) {x} +-- lemma-a x lt = proj1 lt +-- lemma : (x : OD ) → _⊆_ (Ord ( od→ord (ZFSubset (Ord a) (ord→od y)))) (Ord a) {x} +-- lemma x = {!!} +-- +-- continuum-hyphotheis : (a : Ordinal) → (x : OD) → _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} +-- continuum-hyphotheis a x = lemma2 where +-- lemma1 : sup-o (λ x₁ → od→ord (ZFSubset (Ord a) (ord→od x₁))) o< osuc a +-- lemma1 = {!!} +-- lemma : _⊆_ (Def (Ord a)) (Ord (osuc a)) {x} +-- lemma = o<→c< lemma1 +-- lemma2 : _⊆_ (Power (Ord a)) (Ord (osuc a)) {x} +-- lemma2 = subst ( λ k → _⊆_ k (Ord (osuc a)) {x} ) (sym (==→o≡ ord-power-lemma)) lemma
--- a/zf.agda Mon Sep 30 21:22:07 2019 +0900 +++ b/zf.agda Sun Oct 06 16:42:42 2019 +0900 @@ -35,7 +35,7 @@ _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) _∪_ : ( A B : ZFSet ) → ZFSet - A ∪ B = Union (A , B) -- Select A ( λ x → ( A ∋ x ) ∨ ( B ∋ x ) ) is easier + A ∪ B = Union (A , B) {_} : ZFSet → ZFSet { x } = ( x , x ) infixr 200 _∈_