Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 24:3186bbee99dd
separte level
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 May 2019 16:03:10 +0900 |
parents | 7293a151d949 |
children | 0f3d98e97593 |
files | constructible-set.agda |
diffstat | 1 files changed, 113 insertions(+), 90 deletions(-) [+] |
line wrap: on
line diff
--- a/constructible-set.agda Sat May 18 08:29:08 2019 +0900 +++ b/constructible-set.agda Sat May 18 16:03:10 2019 +0900 @@ -1,5 +1,5 @@ open import Level -module constructible-set (n : Level) where +module constructible-set where open import zf @@ -7,25 +7,25 @@ open import Relation.Binary.PropositionalEquality -data OrdinalD : (lv : Nat) → Set n where - Φ : {lv : Nat} → OrdinalD lv - OSuc : {lv : Nat} → OrdinalD lv → OrdinalD lv +data OrdinalD {n : Level} : (lv : Nat) → Set n where + Φ : (lv : Nat) → OrdinalD lv + OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv ℵ_ : (lv : Nat) → OrdinalD (Suc lv) -record Ordinal : Set n where +record Ordinal {n : Level} : Set n where field lv : Nat - ord : OrdinalD lv + ord : OrdinalD {n} lv -data _d<_ : {lx ly : Nat} → OrdinalD lx → OrdinalD ly → Set n where - Φ< : {lx : Nat} → {x : OrdinalD lx} → Φ {lx} d< OSuc {lx} x - s< : {lx : Nat} → {x y : OrdinalD lx} → x d< y → OSuc {lx} x d< OSuc {lx} y - ℵΦ< : {lx : Nat} → {x : OrdinalD (Suc lx) } → Φ {Suc lx} d< (ℵ lx) - ℵ< : {lx : Nat} → {x : OrdinalD (Suc lx) } → OSuc {Suc lx} x d< (ℵ lx) +data _d<_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where + Φ< : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d< OSuc lx x + s< : {lx : Nat} → {x y : OrdinalD {n} lx} → x d< y → OSuc lx x d< OSuc lx y + ℵΦ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → Φ (Suc lx) d< (ℵ lx) + ℵ< : {lx : Nat} → {x : OrdinalD {n} (Suc lx) } → OSuc (Suc lx) x d< (ℵ lx) open Ordinal -_o<_ : ( x y : Ordinal ) → Set n +_o<_ : {n : Level} ( x y : Ordinal ) → Set (suc n) _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) open import Data.Nat.Properties @@ -35,53 +35,53 @@ open import Relation.Binary open import Relation.Binary.Core -o∅ : Ordinal -o∅ = record { lv = Zero ; ord = Φ } +o∅ : {n : Level} → Ordinal {n} +o∅ = record { lv = Zero ; ord = Φ Zero } -≡→¬d< : {lv : Nat} → {x : OrdinalD lv } → x d< x → ⊥ -≡→¬d< {lx} {OSuc y} (s< t) = ≡→¬d< t +≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ +≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t -trio<> : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ -trio<> {lx} {.(OSuc _)} {.(OSuc _)} (s< s) (s< t) = +trio<> : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ +trio<> {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t -trio<≡ : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ +trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ trio<≡ refl = ≡→¬d< -trio>≡ : {lx : Nat} {x : OrdinalD lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ +trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ trio>≡ refl = ≡→¬d< -triO : {lx ly : Nat} → OrdinalD lx → OrdinalD ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) -triO {lx} {ly} x y = <-cmp lx ly +triO : {n : Level} → {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) +triO {n} {lx} {ly} x y = <-cmp lx ly -triOrdd : {lx : Nat} → Trichotomous _≡_ ( _d<_ {lx} {lx} ) -triOrdd {lv} Φ Φ = tri≈ ≡→¬d< refl ≡→¬d< -triOrdd {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< -triOrdd {lv} Φ (OSuc y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) -triOrdd {.(Suc lv)} Φ (ℵ lv) = tri< (ℵΦ< {lv} {Φ} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {lv} {Φ} )) ) -triOrdd {Suc lv} (ℵ lv) Φ = tri> ( λ lt → trio<> lt (ℵΦ< {lv} {Φ} ) ) (λ ()) (ℵΦ< {lv} {Φ} ) -triOrdd {Suc lv} (ℵ lv) (OSuc y) = tri> ( λ lt → trio<> lt (ℵ< {lv} {y} ) ) (λ ()) (ℵ< {lv} {y} ) -triOrdd {lv} (OSuc x) Φ = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< -triOrdd {.(Suc lv)} (OSuc x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) -triOrdd {lv} (OSuc x) (OSuc y) with triOrdd x y -triOrdd {lv} (OSuc x) (OSuc y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) -triOrdd {lv} (OSuc x) (OSuc x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< -triOrdd {lv} (OSuc x) (OSuc y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) +triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) +triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< +triOrdd {_} {Suc lv} (ℵ lv) (ℵ lv) = tri≈ ≡→¬d< refl ≡→¬d< +triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) +triOrdd {_} {.(Suc lv)} (Φ (Suc lv)) (ℵ lv) = tri< (ℵΦ< {_} {lv} {Φ (Suc lv)} ) (λ ()) ( λ lt → trio<> lt ((ℵΦ< {_} {lv} {Φ (Suc lv)} )) ) +triOrdd {_} {Suc lv} (ℵ lv) (Φ (Suc lv)) = tri> ( λ lt → trio<> lt (ℵΦ< {_} {lv} {Φ (Suc lv)} ) ) (λ ()) (ℵΦ< {_} {lv} {Φ (Suc lv)} ) +triOrdd {_} {Suc lv} (ℵ lv) (OSuc (Suc lv) y) = tri> ( λ lt → trio<> lt (ℵ< {_} {lv} {y} ) ) (λ ()) (ℵ< {_} {lv} {y} ) +triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< +triOrdd {_} {.(Suc lv)} (OSuc (Suc lv) x) (ℵ lv) = tri< ℵ< (λ ()) (λ lt → trio<> lt ℵ< ) +triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y +triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) ) ( λ lt → trio<> lt (s< a) ) +triOrdd {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d< +triOrdd {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> ( λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c) -d<→lv : {x y : Ordinal } → ord x d< ord y → lv x ≡ lv y +d<→lv : {n : Level} {x y : Ordinal {n}} → ord x d< ord y → lv x ≡ lv y d<→lv Φ< = refl d<→lv (s< lt) = refl d<→lv ℵΦ< = refl d<→lv ℵ< = refl -orddtrans : {lx : Nat} {x y z : OrdinalD lx } → x d< y → y d< z → x d< z -orddtrans {lx} {.Φ} {.(OSuc _)} {.(OSuc _)} Φ< (s< y<z) = Φ< -orddtrans {Suc lx} {Φ {Suc lx}} {OSuc y} {ℵ lx} Φ< ℵ< = ℵΦ< {lx} {y} -orddtrans {lx} {.(OSuc _)} {.(OSuc _)} {.(OSuc _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z ) -orddtrans {.(Suc _)} {.(OSuc _)} {.(OSuc _)} {.(ℵ _)} (s< x<y) ℵ< = ℵ< -orddtrans {.(Suc _)} {.Φ} {.(ℵ _)} {z} ℵΦ< () -orddtrans {.(Suc _)} {.(OSuc _)} {.(ℵ _)} {z} ℵ< () +orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n} lx } → x d< y → y d< z → x d< z +orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< +orddtrans {_} {Suc lx} {Φ (Suc lx)} {OSuc (Suc lx) y} {ℵ lx} Φ< ℵ< = ℵΦ< {_} {lx} {y} +orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z ) +orddtrans {_} {Suc lx} {.(OSuc (Suc lx) _)} {.(OSuc (Suc lx) _)} {.(ℵ _)} (s< x<y) ℵ< = ℵ< +orddtrans {_} {Suc lx} {Φ (Suc lx)} {.(ℵ _)} {z} ℵΦ< () +orddtrans {_} {Suc lx} {OSuc (Suc lx) _} {.(ℵ _)} {z} ℵ< () max : (x y : Nat) → Nat max Zero Zero = Zero @@ -89,31 +89,52 @@ max (Suc x) Zero = (Suc x) max (Suc x) (Suc y) = Suc ( max x y ) -maxαd : { lx : Nat } → OrdinalD lx → OrdinalD lx → OrdinalD lx +maxαd : {n : Level} → { lx : Nat } → OrdinalD {n} lx → OrdinalD lx → OrdinalD lx maxαd x y with triOrdd x y maxαd x y | tri< a ¬b ¬c = y maxαd x y | tri≈ ¬a b ¬c = x maxαd x y | tri> ¬a ¬b c = x -maxα : Ordinal → Ordinal → Ordinal +maxα : {n : Level} → Ordinal {n} → Ordinal → Ordinal maxα x y with <-cmp (lv x) (lv y) maxα x y | tri< a ¬b ¬c = x maxα x y | tri> ¬a ¬b c = y maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } -_o≤_ : Ordinal → Ordinal → Set n +_o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) a o≤ b = (a ≡ b) ∨ ( a o< b ) -trio< : Trichotomous _≡_ _o<_ +trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ trio< a b with <-cmp (lv a) (lv b) -trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) {!!} -trio< a b | tri> ¬a ¬b c = tri> {!!} (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) +trio< a b | tri< a₁ ¬b ¬c = tri< (case1 a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where + lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a) + lemma1 (case1 x) = ¬c x + lemma1 (case2 x) with d<→lv x + lemma1 (case2 x) | refl = ¬b refl +trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where + lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b) + lemma1 (case1 x) = ¬a x + lemma1 (case2 x) with d<→lv x + lemma1 (case2 x) | refl = ¬b refl trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b ) -trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b {!!} ) {!!} -trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ {!!} refl {!!} -trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> {!!} {!!} (case2 c) +trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where + lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b + lemma1 refl = refl + lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x) + lemma2 (case1 x) = ¬a x + lemma2 (case2 x) = trio<> x a +trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where + lemma1 : (record { lv = _ ; ord = x }) ≡ b → x ≡ ord b + lemma1 refl = refl + lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b) + lemma2 (case1 x) = ¬a x + lemma2 (case2 x) = trio<> x c +trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where + lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b) + lemma1 (case1 x) = ¬a x + lemma1 (case2 x) = ≡→¬d< x -OrdTrans : Transitive _o≤_ +OrdTrans : {n : Level} → Transitive {suc n} _o≤_ OrdTrans (case1 refl) (case1 refl) = case1 refl OrdTrans (case1 refl) (case2 lt2) = case2 lt2 OrdTrans (case2 lt1) (case1 refl) = case2 lt1 @@ -125,41 +146,41 @@ OrdTrans (case2 (case2 x)) (case2 (case2 y)) with d<→lv x | d<→lv y OrdTrans (case2 (case2 x)) (case2 (case2 y)) | refl | refl = case2 (case2 (orddtrans x y )) -OrdPreorder : Preorder n n n -OrdPreorder = record { Carrier = Ordinal +OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n) +OrdPreorder {n} = record { Carrier = Ordinal ; _≈_ = _≡_ ; _∼_ = _o≤_ ; isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = case1 - ; trans = OrdTrans + ; trans = OrdTrans } } -TransFinite : ( ψ : Ordinal → Set n ) +TransFinite : {n : Level} → ( ψ : Ordinal {n} → Set n ) → ( ∀ (lx : Nat ) → ψ ( record { lv = Suc lx ; ord = ℵ lx } )) - → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ } ) ) - → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc x } ) ) + → ( ∀ (lx : Nat ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) + → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ψ ( record { lv = lx ; ord = x } ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) → ∀ (x : Ordinal) → ψ x -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ } = caseΦ lv -TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc ord₁ } = caseOSuc lv ord₁ +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = Φ lv } = caseΦ lv +TransFinite ψ caseℵ caseΦ caseOSuc record { lv = lv ; ord = OSuc lv ord₁ } = caseOSuc lv ord₁ ( TransFinite ψ caseℵ caseΦ caseOSuc (record { lv = lv ; ord = ord₁ } )) TransFinite ψ caseℵ caseΦ caseOSuc record { lv = Suc lv₁ ; ord = ℵ lv₁ } = caseℵ lv₁ -- X' = { x ∈ X | ψ x } ∪ X , Mα = ( ∪ (β < α) Mβ ) ' -record ConstructibleSet : Set (suc (suc n)) where +record ConstructibleSet {n : Level} : Set (suc n) where field - α : Ordinal - constructible : Ordinal → Set (suc n) + α : Ordinal {suc n} + constructible : Ordinal {suc n} → Set n open ConstructibleSet -_∋_ : (ConstructibleSet ) → (ConstructibleSet ) → Set (suc n) +_∋_ : {n : Level} → (ConstructibleSet {n}) → (ConstructibleSet {n} ) → Set (suc n) a ∋ x = ( α x o< α a ) ∧ constructible a ( α x ) -c∅ : ConstructibleSet -c∅ = record {α = o∅ ; constructible = λ x → Lift (suc n) ⊥ } +c∅ : {n : Level} → ConstructibleSet +c∅ {n} = record {α = o∅ ; constructible = λ x → Lift n ⊥ } record SupR {n m : Level} {S : Set n} ( _≤_ : S → S → Set m ) (ψ : S → S ) (X : S) : Set (n ⊔ m) where field @@ -169,47 +190,49 @@ open SupR -_⊆_ : ( A B : ConstructibleSet ) → ∀{ x : ConstructibleSet } → Set (suc n) +_⊆_ : {n : Level} → ( A B : ConstructibleSet ) → ∀{ x : ConstructibleSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x -suptraverse : (X : ConstructibleSet ) ( max : ConstructibleSet) ( ψ : ConstructibleSet → ConstructibleSet ) → ConstructibleSet +suptraverse : {n : Level} → (X : ConstructibleSet {n}) ( max : ConstructibleSet {n}) ( ψ : ConstructibleSet {n} → ConstructibleSet {n}) → ConstructibleSet {n} suptraverse X max ψ = {!!} -Sup : (ψ : ConstructibleSet → ConstructibleSet ) → (X : ConstructibleSet) → SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X -sup (Sup ψ X ) = suptraverse X c∅ ψ -smax (Sup ψ X ) = {!!} -- TransFinite {!!} {!!} {!!} {!!} {!!} +Sup : {n : Level } → (ψ : ConstructibleSet → ConstructibleSet ) → (X : ConstructibleSet) → SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X +sup (Sup {n} ψ X ) = suptraverse X (c∅ {n}) ψ +smax (Sup ψ X ) = {!!} suniq (Sup ψ X ) = {!!} - --- transitiveness : (a b c : ConstructibleSet ) → a ∋ b → b ∋ c → a ∋ c --- transitiveness a b c a∋b b∋c with constructible a c∋ constructible b | constructible b c∋ constructible c --- ... | t1 | t2 = {!!} - open import Data.Unit open SupR -ConstructibleSet→ZF : ZF {suc (suc n)} {suc (suc n)} -ConstructibleSet→ZF = record { +ConstructibleSet→ZF : {n : Level} → ZF {suc n} {suc n} +ConstructibleSet→ZF {n} = record { ZFSet = ConstructibleSet - ; _∋_ = λ a b → Lift (suc (suc n)) ( a ∋ b ) + ; _∋_ = _∋_ ; _≈_ = _≡_ - ; ∅ = c∅ + ; ∅ = c∅ ; _,_ = _,_ ; Union = Union ; Power = {!!} ; Select = Select - ; Replace = Replace + ; Replace = {!!} ; infinite = {!!} ; isZF = {!!} } where - conv : (ConstructibleSet → Set (suc (suc n))) → ConstructibleSet → Set (suc n) - conv ψ x with ψ x + conv : {n : Level} → (ConstructibleSet {n} → Set (suc (suc n))) → ConstructibleSet → Set (suc n) + conv {n} ψ x with ψ x ... | t = Lift ( suc n ) ⊤ - Select : (X : ConstructibleSet) → (ConstructibleSet → Set (suc (suc n))) → ConstructibleSet - Select X ψ = record { α = α X ; constructible = λ x → (conv ψ) (record { α = x ; constructible = λ x → constructible X x } ) } - Replace : (X : ConstructibleSet) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet - Replace X ψ = record { α = α (sup (Sup ψ X)) ; constructible = λ x → {!!} } - _,_ : ConstructibleSet → ConstructibleSet → ConstructibleSet - a , b = record { α = maxα (α a) (α b) ; constructible = λ x → {!!} } + Select : (X : ConstructibleSet {n}) → (ConstructibleSet {n} → Set (suc n)) → ConstructibleSet {n} + Select X ψ = record { α = α X ; constructible = λ x → {!!} } -- ψ (record { α = x ; constructible = λ x → constructible X x } ) } + Replace : (X : ConstructibleSet {n} ) → (ConstructibleSet → ConstructibleSet) → ConstructibleSet + Replace X ψ = record { α = α (sup supψ) ; constructible = λ x → {!!} } where + supψ : SupR (λ x a → (α a ≡ α x) ∨ (a ∋ x)) ψ X + supψ = Sup ψ X + repl : Ordinal {n} → Set (suc n) + repl x = {!!} + conv1 : (Ordinal {n} → Set n) → Ordinal {n} → Set n + conv1 ψ x with ψ + ... | t = Lift n ⊤ + _,_ : ConstructibleSet {n} → ConstructibleSet → ConstructibleSet + a , b = record { α = maxα (α a) (α b) ; constructible = λ x → {!!} } -- ((x ≡ α a ) ∨ ( x ≡ α b )) } Union : ConstructibleSet → ConstructibleSet Union a = {!!}