Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 451:31f0a5a745a5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 14 Mar 2022 19:53:54 +0900 |
parents | b27d92694ed5 |
children | 76aba34438f2 |
files | src/BAlgbra.agda src/generic-filter.agda |
diffstat | 2 files changed, 19 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/BAlgbra.agda Mon Mar 14 17:51:16 2022 +0900 +++ b/src/BAlgbra.agda Mon Mar 14 19:53:54 2022 +0900 @@ -50,6 +50,13 @@ _\_ : ( A B : HOD ) → HOD A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) } +¬∅∋ : {x : HOD} → ¬ ( od∅ ∋ x ) +¬∅∋ {x} = ¬x<0 + +[a-b]∩b=0 : { A B : HOD } → (A \ B) ∩ B ≡ od∅ +[a-b]∩b=0 {A} {B} = ==→o≡ record { eq← = λ lt → ⊥-elim ( ¬∅∋ (subst (λ k → odef od∅ k) (sym &iso) lt )) + ; eq→ = λ {x} lt → ⊥-elim (proj2 (proj1 lt ) (proj2 lt)) } + ∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B ) ∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where lemma1 : {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x
--- a/src/generic-filter.agda Mon Mar 14 17:51:16 2022 +0900 +++ b/src/generic-filter.agda Mon Mar 14 19:53:54 2022 +0900 @@ -222,13 +222,19 @@ p⊆P : p ⊆ P p⊆P = ODC.power→⊆ O _ _ PP∋p df : {x : HOD} → x ⊆ P → HOD - df {x} PP∋x with Incompatible.incompatible (I p p⊆P) x PP∋x - ... | case1 q = Incompatible.q (I p p⊆P) - ... | case2 r = Incompatible.r (I p p⊆P) + df {x} PP∋x with Incompatible.incompatible (I x PP∋x) x PP∋x + ... | case1 q = Incompatible.q (I x PP∋x) + ... | case2 r = Incompatible.r (I x PP∋x) + df¬⊆ : {x : HOD} → (lt : x ⊆ P) → ¬ ( df lt ⊆ x ) + df¬⊆ {x} PP∋x with Incompatible.incompatible (I p p⊆P) x PP∋x + ... | case1 q = {!!} + ... | case2 r = {!!} df-d : {x : HOD} → (lt : x ⊆ P) → D ∋ df lt - df-d = {!!} + df-d {x} lt = {!!} df-p : {x : HOD} → (lt : x ⊆ P) → x ⊆ df lt - df-p = {!!} + df-p {x} lt with Incompatible.incompatible (I x lt) x lt + ... | case1 q = Incompatible.p⊆q (I x lt) + ... | case2 r = Incompatible.p⊆r (I x lt) D-Dense : Dense P D-Dense = record { dense = D @@ -238,7 +244,7 @@ ; dense-p = df-p } D∩G=∅ : ( D ∩ G ) =h= od∅ - D∩G=∅ = {!!} + D∩G=∅ = ≡od∅→=od∅ ([a-b]∩b=0 {Power P} {G}) D∩G≠∅ : ¬ (( D ∩ G ) =h= od∅ ) D∩G≠∅ eq = generic (P-GenericFilter P p PP∋p C) D-Dense ( ==→o≡ eq )