Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 58:323b561210b5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 May 2019 23:02:50 +0900 |
parents | 419688a279e0 |
children | d13d1351a1fa |
files | ordinal-definable.agda |
diffstat | 1 files changed, 25 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Tue May 28 11:31:43 2019 +0900 +++ b/ordinal-definable.agda Tue May 28 23:02:50 2019 +0900 @@ -339,39 +339,44 @@ minimul<x x not = lemma0 (min<x (minord x not)) where lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) lemma0 m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl - regularity-ord : (x : Ordinal ) (not : o∅ o< x ) → - (ord→od x ∋ minimul (ord→od x) (∅0 not)) ∧ (Select (minimul (ord→od x) (∅0 not)) (λ x₁ → (minimul (ord→od x) (∅0 not) ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅) - proj1 ( regularity-ord x non ) = minimul<x (ord→od x) (∅0 non) - proj2 ( regularity-ord x non ) = reg1 where - reg2 : {y : Ordinal} → ( def (minimul (ord→od x) (∅0 non)) y ∧ (minimul (ord→od x) (∅0 non) ∋ ord→od y) ∧ ((ord→od x) ∋ ord→od y) ) → ⊥ + regularity-ord : (x : Ordinal ) (not : ¬ (ord→od x == od∅)) → + (ord→od x ∋ minimul (ord→od x) not) ∧ (Select (minimul (ord→od x) not) (λ x₁ → (minimul (ord→od x) not ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅) + proj1 ( regularity-ord x not ) = minimul<x (ord→od x) not + proj2 ( regularity-ord x not ) = reg1 where + reg2 : {y : Ordinal} → ( def (minimul (ord→od x) not) y ∧ (minimul (ord→od x) not ∋ ord→od y) ∧ ((ord→od x) ∋ ord→od y) ) → ⊥ reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t) ... | p1 | p2 | p3 with is-∋ (ord→od x) ( ord→od y) reg2 {y} t | p1 | p2 | p3 | no ¬p = ⊥-elim (¬p p3 ) -- ¬ x ∋ ord→od y empty x case - reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul (ord→od x) (∅0 non)) (ord→od y) + reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul (ord→od x) not) (ord→od y) reg2 {y} t | p1 | p2 | p3 | yes p | no ¬p = ⊥-elim (¬p p2 ) -- minimum contains nothing q.e.d. reg2 {y} t | p1 | p2 | p3 | yes p | yes p₁ = {!!} - reg0 : {y : Ordinal {suc n}} → Minimumo x → def (Select (minimul (ord→od x) (∅0 non)) (λ z → (minimul (ord→od x) (∅0 non) ∋ z) ∧ ((ord→od x) ∋ z))) y → def od∅ y - reg0 {y} m t with trio< y (mino (minord (ord→od x) (∅0 non))) - reg0 {y} m t | tri< a ¬b ¬c with reg2 {y} t + reg0 : {y : Ordinal {suc n}} → def (Select (minimul (ord→od x) not) (λ z → (minimul (ord→od x) not ∋ z) ∧ ((ord→od x) ∋ z))) y → def od∅ y + reg0 {y} t with trio< y (mino (minord (ord→od x) not)) + reg0 {y} t | tri< a ¬b ¬c with reg2 {y} t ... | () - reg0 {y} m t | tri≈ ¬a refl ¬c = lemma y ( mino (minord (ord→od x) (∅0 non)) ) refl - (def-subst {suc n} {ord→od y} {mino (minord (ord→od x) (∅0 non))} (proj1 t) refl (sym diso)) + reg0 {y} t | tri≈ ¬a refl ¬c = lemma y ( mino (minord (ord→od x) not) ) refl + (def-subst {suc n} {ord→od y} {mino (minord (ord→od x) not)} (proj1 t) refl (sym diso)) where lemma : ( ox oy : Ordinal {suc n} ) → ox ≡ oy → ord→od ox c< ord→od oy → Lift (suc n) ⊥ lemma ox oy refl lt = lift ( o≡→¬c< {suc n} {ord→od oy} {ord→od oy} refl lt ) - reg0 {y} m t | tri> ¬a ¬b c with o<> y (mino (minord (ord→od x) (∅0 non))) (lemma {!!}) c where - lemma : def (ord→od (mino (ominimal x (∅5 (λ eq → (∅0 non) (∅7 {!!})))))) y → y o< mino (minord (ord→od x) (∅0 non)) - lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord (ord→od x) (∅0 non)))} - (def-subst {suc n} {ord→od (mino (minord (ord→od x) (∅0 non)))} {y} {!!} refl (sym diso)) + reg0 {y} t | tri> ¬a ¬b c with o<> y (mino (minord (ord→od x) not)) (lemma {!!}) c where + lemma : def (ord→od (mino (minord (ord→od x) not))) y → y o< mino (minord (ord→od x) not) + lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord (ord→od x) not))} + (def-subst {suc n} {ord→od (mino (minord (ord→od x) not))} {y} {!!} refl (sym diso)) lemma d | clt = o<-subst clt ord-iso ord-iso ... | () - reg1 : Select (minimul (ord→od x) (∅0 non)) (λ x₁ → (minimul (ord→od x) (∅0 non) ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅ - reg1 = record { eq→ = reg0 (ominimal x non) ; eq← = λ () } where + reg1 : Select (minimul (ord→od x) not) (λ x₁ → (minimul (ord→od x) not ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅ + reg1 = record { eq→ = reg0 ; eq← = λ () } where ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq where regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) - regularity x not with regularity-ord ( od→ord x ) ( ∅9 not ) - ... | t = ? - + proj1 (regularity x not ) = minimul<x x not + proj2 (regularity x not ) = record { eq→ = reg4 ; eq← = λ () } where + reg4 : {xd : Ordinal } → def (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁))) xd → def od∅ xd + reg4 {xd} = {!!} (eq→ (proj1 (regularity-ord {!!} {!!} )) ) + + + +