changeset 132:327d49c2478b

use OD for replace condition
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 06 Jul 2019 18:31:46 +0900
parents 5dcd5a3583a0
children 35ce91192cf4
files ordinal-definable.agda zf.agda
diffstat 2 files changed, 7 insertions(+), 17 deletions(-) [+]
line wrap: on
line diff
--- a/ordinal-definable.agda	Wed Jul 03 00:25:58 2019 +0900
+++ b/ordinal-definable.agda	Sat Jul 06 18:31:46 2019 +0900
@@ -278,6 +278,9 @@
 csuc :  {n : Level} →  OD {suc n} → OD {suc n}
 csuc x = Ord ( osuc ( od→ord x ))
 
+f-rel : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n}
+f-rel {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → def X y → ¬ ( x ≡ od→ord (ψ (Ord y ))))  }
+
 -- Power Set of X ( or constructible by λ y → def X (od→ord y )
 
 ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n}
@@ -314,7 +317,7 @@
     _∩_ : ( A B : OD  ) → OD
     A ∩ B = record { def = λ x → def A x  ∧ def B x }
     Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n}
-    Replace X ψ = record { def = λ x → x o< sup-o ( λ x → od→ord (ψ (X ∩ (ord→od x )))) }
+    Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (X ∩ (ord→od x ))))) ∧ def (f-rel X ψ) x }
     Union : OD {suc n} → OD {suc n}
     Union U = record { def = λ y → osuc y o< (od→ord U) }
     -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x →  X ∋ x )
@@ -346,8 +349,6 @@
        ;   infinity∅ = infinity∅
        ;   infinity = λ _ → infinity
        ;   selection = λ {X} {ψ} {y} → selection {ψ} {X} {y} 
-       ;   repl-x = repl-x
-       ;   repl-x-∈ = repl-x-∈
        ;   replacement← = replacement←
        ;   replacement→ = replacement→
      } where
@@ -414,18 +415,9 @@
            } where
                lemma : (cond : ((y : OD) → X ∋ y → ψ y ) ∧ (X ∋ y) ) → ψ y
                lemma cond = (proj1 cond) y (proj2 cond)
-         repl-x  : {ψ : OD → OD} {X x : OD} → (lt : Replace X ψ ∋ x) → OD
-         repl-x {ψ} {X} {x} lt = Ord (sup-x (λ x → od→ord (ψ (ord→od x))))
-         repl-x-∈  : {ψ : OD → OD} {X x : OD} → (lt : Replace X ψ ∋ x) → X ∋ repl-x {ψ} {X} {x} lt
-         repl-x-∈ {ψ} {X} {x} lt = {!!}
-         X∩x : {X x : OD} →  X ∋ x → X ∩ x ≡ x
-         X∩x = {!!}
          replacement← : {ψ : OD → OD} (X x : OD) →  X ∋ x → Replace X ψ ∋ ψ x
-         replacement← {ψ} X x lt = def-subst  ( sup-c< ψ {x} ) (sym lemma) refl where
-            lemma : record { def =  λ x → x o< sup-o ( λ x → od→ord (ψ (X ∩ (ord→od x )))) } ≡
-                    record { def =  λ x → x o< sup-o ( λ x → od→ord (ψ (ord→od x ))) } 
-            lemma = {!!} 
-         replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → x == ψ (repl-x {ψ} {X} {x} lt)
+         replacement← {ψ} X x lt = record { proj1 =  sup-o< {suc n} {λ x → od→ord (ψ (ord→od x)) }  ; proj2 = {!!} }
+         replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → {y : OD} → ¬ (¬ (ψ x == y))
          replacement→ {ψ} X x = {!!} 
          ∅-iso :  {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) 
          ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq  
--- a/zf.agda	Wed Jul 03 00:25:58 2019 +0900
+++ b/zf.agda	Sat Jul 06 18:31:46 2019 +0900
@@ -77,10 +77,8 @@
      infinity :  ∀( X x : ZFSet  ) → x ∈ infinite →  ( x ∪ { x }) ∈ infinite 
      selection : ∀ { X : ZFSet  } →  { ψ : (x : ZFSet ) →  Set m } → ∀ {  y : ZFSet  } →  (((y : ZFSet) → y ∈ X → ψ y ) ∧ ( y ∈ X ) ) ⇔ (y ∈  Select X ψ ) 
      -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) )
-     repl-x : {ψ : ZFSet → ZFSet} → { X x : ZFSet  }  ( lt : x ∈  Replace X ψ ) →  ZFSet
-     repl-x-∈ : {ψ : ZFSet → ZFSet} → { X x : ZFSet  } →  (lt : x ∈  Replace X ψ ) →  repl-x lt ∈ X
      replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet  ) → x ∈ X → ψ x ∈  Replace X ψ 
-     replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet  ) →  ( lt : x ∈  Replace X ψ ) → x ≈ ψ ( repl-x lt )  
+     replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet  ) →  ( lt : x ∈  Replace X ψ ) → ∀ {y : ZFSet}  → ¬ ( ¬ ( ψ x ≈ y ) )
    -- -- ∀ z [ ∀ x ( x ∈ z  → ¬ ( x ≈ ∅ ) )  ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y )  → x ∩ y ≈ ∅  ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ]
    -- axiom-of-choice : Set (suc n) 
    -- axiom-of-choice = ?