Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1448:32cc4b789036
this is also bad
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jul 2023 12:32:31 +0900 |
parents | 3e50aa63f550 |
children | 6b8c6342da55 |
files | src/cardinal.agda |
diffstat | 1 files changed, 17 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/src/cardinal.agda Wed Jul 05 12:09:48 2023 +0900 +++ b/src/cardinal.agda Wed Jul 05 12:32:31 2023 +0900 @@ -348,29 +348,20 @@ b : HODBijection (Power S) S b = subst₂ (λ j k → HODBijection j k) *iso *iso ( Bernstein f2 f1) - record inS : Set n where - field - x : Ordinal - sx : odef S x + data inS : Set n where + ins : (x : Ordinal) (sx : odef S x) → inS - ins-refl : (x : inS) → record { x = inS.x x ; sx = inS.sx x } ≡ x - ins-refl x with HE.≅-to-≡ ( ∋-irr {S} (inS.sx x) (inS.sx x) ) - ... | refl = refl + xinS : inS → Ordinal + xinS (ins x sx) = x - inS-eq : {x y : inS } → inS.x x ≡ inS.x y → x ≡ y - inS-eq {x} {y} eq = ? where -- HE.≅-to-≡ (ca11 (inS.sx x) (inS.sx y) eq ?) where - ca11 : {x y : Ordinal} → (sx1 : odef S x) (sy1 : odef S y) → x ≡ y → sx1 ≅ sy1 - → record { x = x ; sx = sx1 } ≅ record { x = y ; sx = sy1 } - ca11 _ _ refl HE.refl = HE.refl + inS-eq : {x y : inS} → xinS x ≡ xinS y → x ≡ y + inS-eq {ins x sx} {ins .(xinS (ins x sx)) sy} refl = cong (λ k → ins x k ) ( HE.≅-to-≡ ( ∋-irr {S} sx sy )) - -- cong₂ (λ j k → record { x = j ; sx = k }) eq ( HE.≅-to-≡ ( ∋-irr {S} (inS.sx x) (inS.sx y) )) - -- ca11 : inS.x x ≡ inS.x y → inS.sx x ≅ inS.sx y → x ≡ y - -- ca11 refl refl = refl + data inSC (ib : inS → Bool) (x : Ordinal) : Set n where + insc : (sx : odef S x) (tsx : ib (ins x sx) ≡ true) → inSC ib x - record inSC (ib : inS → Bool) (x : Ordinal) : Set n where - field - sx : odef S x - tsx : ib record { x = x ; sx = sx } ≡ true + import Axiom.Extensionality.Propositional + postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m BS : Bijection (inS → Bool ) inS BS = record { @@ -380,19 +371,21 @@ ; fiso→ = ca05 } where ca00 : inS → inS → Bool - ca00 ix iy with ODC.p∨¬p O ( odef (* ( fun← b (inS.x ix ) (inS.sx ix))) (inS.x iy ) ) + ca00 (ins x sx) (ins y sy) with ODC.p∨¬p O ( odef (* ( fun← b x sx)) y ) ... | case1 y = true ... | case2 n = false ca01 : (inS → Bool) → inS - ca01 ib = record { x = fun→ b (& ca03) ca02 ; sx = funB b (& ca03) ca02 } where + ca01 ib = ins (fun→ b (& ca03) ca02) (funB b (& ca03) ca02 ) where ca03 : HOD ca03 = record { od = record { def = λ x → inSC ib x } ; odmax = ? ; <odmax = ? } ca02 : odef (Power S) (& ca03) - ca02 z xz = inSC.sx (subst (λ k → odef k z) *iso xz) + ca02 z xz = ? -- inSC.sx (subst (λ k → odef k z) *iso xz) + ca06 : (ib : inS → Bool) → (z : inS) → ca00 (ca01 ib) z ≡ ib z + ca06 = ? ca04 : (ib : inS → Bool) → ca00 (ca01 ib) ≡ ib - ca04 ib = ? + ca04 ib = f-extensionality (λ z → ca06 ib z ) ca05 : (x : inS) → ca01 (ca00 x) ≡ x - ca05 x = ? + ca05 (ins x sx) = inS-eq ? Cantor2 : { u : HOD } → ¬ ( u =c= Power u )