Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 928:330303f0c688
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 22 Oct 2022 11:15:17 +0900 |
parents | 0f2a85826cc7 |
children | a6d97e6e5309 |
files | src/zorn.agda |
diffstat | 1 files changed, 25 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Oct 21 07:57:07 2022 +0900 +++ b/src/zorn.agda Sat Oct 22 11:15:17 2022 +0900 @@ -696,8 +696,8 @@ uz01 = fcn-cmp y f mf ca cb ysup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) - → SUP A (uchain f mf ay) - ysup f mf {y} ay = supP (uchain f mf ay) (λ lt → A∋fc y f mf lt) (utotal f mf ay) + → MinSUP A (uchain f mf ay) + ysup f mf {y} ay = minsupP (uchain f mf ay) (λ lt → A∋fc y f mf lt) (utotal f mf ay) SUP⊆ : { B C : HOD } → B ⊆' C → SUP A C → SUP A B SUP⊆ {B} {C} B⊆C sup = record { sup = SUP.sup sup ; as = SUP.as sup ; x<sup = λ lt → SUP.x<sup sup (B⊆C lt) } @@ -1197,7 +1197,7 @@ pzc : (z : Ordinal) → z o< x → ZChain A f mf ay z pzc z z<x = prev z z<x - ysp = & (SUP.sup (ysup f mf ay)) + ysp = MinSUP.sup (ysup f mf ay) supf0 : Ordinal → Ordinal supf0 z with trio< z x @@ -1414,14 +1414,29 @@ sp1 : SUP A (ZChain.chain zc) sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc c = & (SUP.sup sp1) - d : Ordinal - d = cf nmx (supf c ) - z21 : d o< & A - z21 = ∈∧P→o< ⟪ proj2 (cf-is-<-monotonic nmx (supf c) (ZChain.asupf zc)) , lift true ⟫ - z20 : supf c << d - z20 = proj1 (cf-is-<-monotonic nmx (supf c) (ZChain.asupf zc) ) + z20 : c << cf nmx c + z20 = proj1 (cf-is-<-monotonic nmx c (SUP.as sp1) ) + asc : odef A (supf c) + asc = ZChain.asupf zc + spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc ) + spd = ysup (cf nmx) (cf-is-≤-monotonic nmx) asc + d = MinSUP.sup spd + d<A : d o< & A + d<A = ∈∧P→o< ⟪ MinSUP.asm spd , lift true ⟫ + sd=ms : supf d ≡ MinSUP.sup ( ZChain.minsup zc (o<→≤ d<A) ) + sd=ms = ZChain.supf-is-minsup zc (o<→≤ d<A) + sd=d : supf d ≡ d + sd=d = ? + sc<d : supf c << d + sc<d = ? where + z21 = proj1 ( cf-is-<-monotonic nmx ? ? ) + sco<d : supf c o< supf d + sco<d = ? + ss<sa : supf c o< supf (& A) - ss<sa = ? + ss<sa with osuc-≡< ( ZChain.supf-mono zc ? ) + ... | case2 lt = lt + ... | case1 eq = ? -- where zorn00 : Maximal A zorn00 with is-o∅ ( & HasMaximal ) -- we have no Level (suc n) LEM ... | no not = record { maximal = ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) ; as = zorn01 ; ¬maximal<x = zorn02 } where