Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 946:3377379a1479
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 31 Oct 2022 11:28:47 +0900 |
parents | da156642b8d0 |
children | a028409f5ca2 |
files | src/zorn.agda |
diffstat | 1 files changed, 41 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Oct 31 02:08:52 2022 +0900 +++ b/src/zorn.agda Mon Oct 31 11:28:47 2022 +0900 @@ -1465,6 +1465,29 @@ ... | case1 eq1 = case1 (cong (*) (trans (cong (cf nmx) (sym eq)) eq1) ) ... | case2 lt = case2 (subst (λ k → * k < * d1 ) (cong (cf nmx) eq) lt) + fsc<<d : {mc z : Ordinal } → (asc : odef A (supf mc)) → (spd : MinSUP A (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc )) + → (fc : FClosure A (cf nmx) (supf mc) z) → z << MinSUP.sup spd + fsc<<d {mc} {z} asc spd fc = z25 where + d1 : Ordinal + d1 = MinSUP.sup spd -- supf d1 ≡ d + z24 : (z ≡ d1) ∨ ( z << d1 ) + z24 = MinSUP.x<sup spd fc + -- + -- f ( f .. ( supf mc ) <= d1 + -- f d1 <= d1 + -- + z25 : z << d1 + z25 with z24 + ... | case2 lt = lt + ... | case1 eq = ⊥-elim ( <-irr z29 (proj1 (cf-is-<-monotonic nmx d1 (MinSUP.asm spd)) ) ) where + -- supf mc ≡ d1 + z32 : ((cf nmx z) ≡ d1) ∨ ( (cf nmx z) << d1 ) + z32 = MinSUP.x<sup spd (fsuc _ fc) + z29 : (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + z29 with z32 + ... | case1 eq1 = case1 (cong (*) (trans (cong (cf nmx) (sym eq)) eq1) ) + ... | case2 lt = case2 (subst (λ k → * k < * d1 ) (cong (cf nmx) eq) lt) + smc<<d : supf mc << d smc<<d = sc<<d asc spd @@ -1505,6 +1528,10 @@ z31 = ZChain.f-next zc (subst (λ k → odef (ZChain.chain zc) k) (sym (HasPrev.x=fy hp)) (ZChain.f-next zc (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ d<A) ( HasPrev.ay hp )))) + z32 : odef (ZChain.chain zc) d + z32 = subst (λ k → odef (ZChain.chain zc) k) (sym (HasPrev.x=fy hp)) + (ZChain.f-next zc + (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ d<A) ( HasPrev.ay hp ))) -- case1 : FClosure of s -- case2 : u o< supf mc -- case3 : u ≡ supf mc z31 @@ -1521,16 +1548,27 @@ zy = HasPrev.ay hp d1 : Ordinal d1 = MinSUP.sup spd -- supf d1 ≡ d + z45 : (* (cf nmx (cf nmx y)) ≡ * d1) ∨ (* (cf nmx (cf nmx y)) < * d1) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) + z45 p = subst (λ k → (* (cf nmx k) ≡ * d1) ∨ (* (cf nmx k) < * d1)) (sym (HasPrev.x=fy hp)) p z30 : * d1 < * (cf nmx d1) z30 = proj1 (cf-is-<-monotonic nmx d1 (MinSUP.asm spd)) z24 : y << d1 z24 = subst (λ k → y << k) (sym (HasPrev.x=fy hp)) ( proj1 (cf-is-<-monotonic nmx y (proj1 (HasPrev.ay hp) ) )) z40 : ( u ≡ supf mc ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) - z40 = ? + z40 eq1 with MinSUP.x<sup spd (subst (λ k → FClosure A (cf nmx) k (cf nmx d1) ) (trans (ChainP.supu=u is-sup) eq1 ) fc ) + ... | case1 eq = case1 (cong (*) eq) + ... | case2 lt = case2 lt + postulate + sc : Ordinal + sc=sc : supf mc ≡ sc z41 : ( u o< supf mc ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) - z41 = ? + z41 u<sc with MinSUP.x<sup spd {sc} (init asc sc=sc ) + ... | case2 lt = ? -- sc << d1, u o< mc, supf u ≤ sc, spuf u << d1 + ... | case1 eq = ? z42 : ( supf mc o< u ) → (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) - z42 = ? + z42 sc<u = ? where -- spuf mc o< spuf u, mc o< u, ,l + z44 : ( cf nmx d1 ≡ supf u ) ∨ ( cf nmx d1 << supf u ) + z44 = ChainP.order is-sup (subst (λ k → supf mc o< k ) ? sc<u ) (init ? ? ) postulate z26 : (* (cf nmx d1) ≡ * d1) ∨ (* (cf nmx d1) < * d1) -- z26 with z43 u (supf mc)