Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 407:349d4e734403
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Jul 2020 20:48:24 +0900 |
parents | bf409d31184c |
children | 3ac3704b4cb1 |
files | OD.agda |
diffstat | 1 files changed, 11 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 17:48:28 2020 +0900 +++ b/OD.agda Tue Jul 28 20:48:24 2020 +0900 @@ -481,6 +481,10 @@ pair2 : { x y : HOD } → (x , y ) ∋ y pair2 = case2 refl +single : {x y : HOD } → (x , x ) ∋ y → x ≡ y +single (case1 eq) = ==→o≡ ( ord→== (sym eq) ) +single (case2 eq) = ==→o≡ ( ord→== (sym eq) ) + empty : (x : HOD ) → ¬ (od∅ ∋ x) empty x = ¬x<0 @@ -504,17 +508,16 @@ lemma u t with proj1 t lemma u t | case1 u=x = o<> (c<→o< {ord→od y} {ord→od u} (proj2 t)) (subst₂ (λ j k → j o< k ) (trans (sym diso) (trans (sym u=x) (sym diso)) ) (sym diso) x<y ) -- x ≡ od→ord (ord→od u) - lemma u t | case2 u=xx = o<> x<y (subst (λ k → k o< x ) diso {!!} ) - -- x < y < u = (x , x ) - --(ordtrans {!!} (subst₂ (λ j k → j o< k ) {!!} {!!} (c<→o< {ord→od y} {ord→od u} (proj2 t)) ) )) where - -- lemma1 : od→ord (ord→od u) o< x - -- lemma1 = {!!} + lemma u t | case2 u=xx = o<¬≡ (lemma1 (subst (λ k → odef k (od→ord (ord→od y)) ) (trans (cong (λ k → ord→od k ) u=xx) oiso ) (proj2 t))) x<y where + lemma1 : {x y : Ordinal } → (ord→od x , ord→od x ) ∋ ord→od y → x ≡ y -- y = x ∈ ( x , x ) = u + lemma1 (case1 eq) = subst₂ (λ j k → j ≡ k ) diso diso (sym eq) + lemma1 (case2 eq) = subst₂ (λ j k → j ≡ k ) diso diso (sym eq) ω-prev-eq : {x y : Ordinal} → od→ord (Union (ord→od y , (ord→od y , ord→od y))) ≡ od→ord (Union (ord→od x , (ord→od x , ord→od x))) → x ≡ y ω-prev-eq {x} {y} eq with trio< x y -ω-prev-eq {x} {y} eq | tri< a ¬b ¬c = {!!} +ω-prev-eq {x} {y} eq | tri< a ¬b ¬c = ⊥-elim (ω-prev-eq1 eq a) ω-prev-eq {x} {y} eq | tri≈ ¬a b ¬c = b -ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = {!!} +ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = ⊥-elim (ω-prev-eq1 (sym eq) c) nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} = ε-induction1 {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where @@ -540,7 +543,7 @@ lemma1 = subst (λ k → odef infinite k) (sym diso) ltd lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1 lemma3 iφ iφ refl = HE.refl - lemma3 iφ (isuc ltd1) eq = {!!} + lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ? ) lemma3 (isuc ltd) iφ eq = {!!} lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq)) ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (ω-prev-eq eq)) t