Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 343:34e71402d579
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Jul 2020 14:30:37 +0900 |
parents | b1ccdbb14c92 |
children | e0916a632971 |
files | OD.agda |
diffstat | 1 files changed, 15 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Mon Jul 13 13:55:46 2020 +0900 +++ b/OD.agda Mon Jul 13 14:30:37 2020 +0900 @@ -222,9 +222,20 @@ lemma {t} (case1 refl) = omax-x _ _ lemma {t} (case2 refl) = omax-y _ _ +pair-xx<xy : {x y : HOD} → od→ord (x , x) o< osuc (od→ord (x , y) ) +pair-xx<xy {x} {y} = ⊆→o≤ lemma where + lemma : {z : Ordinal} → def (od (x , x)) z → def (od (x , y)) z + lemma {z} (case1 refl) = case1 refl + lemma {z} (case2 refl) = case1 refl + -- another form of infinite -pair-ord< : {x : Ordinal } → Set n -pair-ord< {x} = od→ord ( ord→od x , ord→od x ) o< next x +-- pair-ord< : {x : Ordinal } → Set n +pair-ord< : {x : HOD } → ( {y : HOD } → od→ord y o< next (odmax y) ) → od→ord ( x , x ) o< next (od→ord x) +pair-ord< {x} ho< = subst (λ k → od→ord (x , x) o< k ) lemmab0 lemmab1 where + lemmab0 : next (odmax (x , x)) ≡ next (od→ord x) + lemmab0 = trans (cong (λ k → next k) (omxx _)) (sym nexto≡) + lemmab1 : od→ord (x , x) o< next ( odmax (x , x)) + lemmab1 = ho< -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) @@ -393,16 +404,9 @@ lemma6 = <odmax (ord→od y , (ord→od y , ord→od y)) (subst ( λ k → def (od (ord→od y , (ord→od y , ord→od y))) k ) diso (case1 refl)) lemma8 : od→ord (ord→od y , ord→od y) o< next (odmax (ord→od y , ord→od y)) lemma8 = ho< - lemmab : {x : HOD} → od→ord (x , x) o< next (od→ord x) - lemmab {x} = subst (λ k → od→ord (x , x) o< k ) lemmab0 lemmab1 where - lemmab0 : next (odmax (x , x)) ≡ next (od→ord x) - lemmab0 = trans (cong (λ k → next k) (omxx _)) (sym nexto≡) - lemmab1 : od→ord (x , x) o< next ( odmax (x , x)) - lemmab1 = ho< - lemmac : {x y : HOD} → od→ord x o< od→ord y → od→ord (x , y) o< od→ord (y , y) - lemmac = {!!} + --- (x,y) < next (omax x y) < next (osuc y) = next y lemmaa : {x y : HOD} → od→ord x o< od→ord y → od→ord (x , y) o< next (od→ord y) - lemmaa x<y = ordtrans (lemmac x<y) lemmab + lemmaa {x} {y} x<y = subst (λ k → od→ord (x , y) o< k ) (sym nexto≡) (subst (λ k → od→ord (x , y) o< next k ) (sym (omax< _ _ x<y)) ho< ) lemma81 : od→ord (ord→od y , ord→od y) o< next (od→ord (ord→od y)) lemma81 = nexto=n (subst (λ k → od→ord (ord→od y , ord→od y) o< k ) (cong (λ k → next k) (omxx _)) lemma8) lemma91 : od→ord (ord→od y) o< od→ord (ord→od y , ord→od y)