Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 133:35ce91192cf4
replacement in ordinal-definable
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2019 00:19:01 +0900 |
parents | 327d49c2478b |
children | b52683497a27 |
files | ordinal-definable.agda zf.agda |
diffstat | 2 files changed, 10 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal-definable.agda Sat Jul 06 18:31:46 2019 +0900 +++ b/ordinal-definable.agda Sun Jul 07 00:19:01 2019 +0900 @@ -278,8 +278,8 @@ csuc : {n : Level} → OD {suc n} → OD {suc n} csuc x = Ord ( osuc ( od→ord x )) -f-rel : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} -f-rel {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → def X y → ¬ ( x ≡ od→ord (ψ (Ord y )))) } +in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} +in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (Ord y ))))) } -- Power Set of X ( or constructible by λ y → def X (od→ord y ) @@ -314,10 +314,10 @@ Select X ψ = record { def = λ x → ((y : Ordinal {suc n}) → def X y → ψ ( ord→od y )) ∧ def X x } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = record { def = λ z → z o< (omax (od→ord x) (od→ord y)) } - _∩_ : ( A B : OD ) → OD + _∩_ : ( A B : OD {suc n} ) → OD A ∩ B = record { def = λ x → def A x ∧ def B x } Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} - Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (X ∩ (ord→od x ))))) ∧ def (f-rel X ψ) x } + Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } Union : OD {suc n} → OD {suc n} Union U = record { def = λ y → osuc y o< (od→ord U) } -- power : ∀ X ∃ A ∀ t ( t ∈ A ↔ ( ∀ {x} → t ∋ x → X ∋ x ) @@ -416,9 +416,11 @@ lemma : (cond : ((y : OD) → X ∋ y → ψ y ) ∧ (X ∋ y) ) → ψ y lemma cond = (proj1 cond) y (proj2 cond) replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x - replacement← {ψ} X x lt = record { proj1 = sup-o< {suc n} {λ x → od→ord (ψ (ord→od x)) } ; proj2 = {!!} } - replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → {y : OD} → ¬ (¬ (ψ x == y)) - replacement→ {ψ} X x = {!!} + replacement← {ψ} X x lt = record { proj1 = sup-c< ψ {x} ; proj2 = lemma } where + lemma : def (in-codomain X ψ) (od→ord (ψ x)) + lemma not = ⊥-elim ( not ( od→ord x ) (record { proj1 = lt ; proj2 = cong (λ k → od→ord (ψ k)) (sym oiso)} ) ) + replacement→ : {ψ : OD → OD} (X x : OD) → (lt : Replace X ψ ∋ x) → ¬ ( (y : OD) → ¬ (ψ x == y)) + replacement→ {ψ} X x lt not = ⊥-elim ( not (ψ x) (ord→== refl ) ) ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n}
--- a/zf.agda Sat Jul 06 18:31:46 2019 +0900 +++ b/zf.agda Sun Jul 07 00:19:01 2019 +0900 @@ -78,7 +78,7 @@ selection : ∀ { X : ZFSet } → { ψ : (x : ZFSet ) → Set m } → ∀ { y : ZFSet } → (((y : ZFSet) → y ∈ X → ψ y ) ∧ ( y ∈ X ) ) ⇔ (y ∈ Select X ψ ) -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → x ∈ X → ψ x ∈ Replace X ψ - replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( lt : x ∈ Replace X ψ ) → ∀ {y : ZFSet} → ¬ ( ¬ ( ψ x ≈ y ) ) + replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( lt : x ∈ Replace X ψ ) → ¬ ( ∀ (y : ZFSet) → ¬ ( ψ x ≈ y ) ) -- -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] -- axiom-of-choice : Set (suc n) -- axiom-of-choice = ?