Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 511:361021fe53aa
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 15 Apr 2022 20:02:12 +0900 |
parents | ec84dce16697 |
children | 7cf24b846920 |
files | src/zorn.agda |
diffstat | 1 files changed, 27 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Apr 15 18:27:04 2022 +0900 +++ b/src/zorn.agda Fri Apr 15 20:02:12 2022 +0900 @@ -161,11 +161,14 @@ -- finite IChain +ic→A∋y : (A : HOD) {x y : Ordinal} (ax : A ∋ * x) → odef (IChainSet {A} (me ax)) y → A ∋ * y +ic→A∋y A {x} {y} ax ⟪ ay , _ ⟫ = subst (λ k → odef A k) (sym &iso) ay + record InFiniteIChain (A : HOD) {x : Ordinal} (ax : A ∋ * x) : Set n where field chain<x : (y : Ordinal ) → odef (IChainSet {A} (me ax)) y → y o< x c-infinite : (y : Ordinal ) → (cy : odef (IChainSet {A} (me ax)) y ) - → IChainSup> A ax + → IChainSup> A (ic→A∋y A ax cy) open import Data.Nat hiding (_<_) import Data.Nat.Properties as NP @@ -183,6 +186,8 @@ cton0 A next (csuc x ax z) = suc (cton0 A next z) cton : (A : HOD ) → (next : (x : Ordinal ) → odef A x → Ordinal ) → Element (ChainClosure A next) → ℕ cton A next y = cton0 A next (is-elm y) +ct∈A : (A : HOD ) → (next : (x : Ordinal ) → odef A x → Ordinal ) → {x : Ordinal} → Chain A next x → odef A x +ct∈A = {!!} InFCSet : (A : HOD) → {x : Ordinal} (ax : A ∋ * x) → (ifc : InFiniteIChain A ax ) → HOD @@ -196,10 +201,19 @@ ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} ; compare = cmp } where IPO : IsPartialOrderSet (InFCSet A ax ifc ) IPO = ⊆-IsPartialOrderSet record { incl = λ {x} lt → {!!} } PO - cnext : (y : Ordinal ) → odef (IChainSet {A} (me ax)) y → Ordinal + B = IChainSet {A} (me ax) + cnext : (y : Ordinal ) → odef B y → Ordinal cnext y ay = IChainSup>.y ( InFiniteIChain.c-infinite ifc y ay ) + ct-monotonic : {ox oy : Ordinal} → (x : Chain B cnext ox ) → (y : Chain B cnext oy ) + → (cton0 B cnext x) Data.Nat.< (cton0 B cnext y) → * ox < * oy + ct-monotonic x (csuc oy ax y) (s≤s lt) with NP.<-cmp ( cton0 B cnext x ) ( cton0 B cnext y ) + ... | tri< a ¬b ¬c = IsStrictPartialOrder.trans PO {me {!!}} {me {!!}} (ct-monotonic x y a ) ct01 where + ct01 : * oy < * ( IChainSup>.y (InFiniteIChain.c-infinite ifc oy ax) ) + ct01 = (IChainSup>.y>x (InFiniteIChain.c-infinite ifc oy ax)) + ... | tri≈ ¬a b ¬c = {!!} + ... | tri> ¬a ¬b c = {!!} cmp : Trichotomous _ _ - cmp x y with NP.<-cmp (cton (IChainSet {A} (me ax)) cnext x) (cton (IChainSet {A} (me ax)) cnext y) + cmp x y with NP.<-cmp (cton B cnext x) (cton B cnext y) ... | tri< a ¬b ¬c = {!!} ... | tri≈ ¬a b ¬c = {!!} ... | tri> ¬a ¬b c = {!!} @@ -336,14 +350,18 @@ ... | case2 (case2 x) = ⊥-elim (zc5 x) where FC : HOD FC = IChainSet {A} (me ax) - zc6 : InFiniteIChain A (subst (OD.def (od A)) (sym &iso) ax) → ¬ SUP A FC + B : InFiniteIChain A ax → HOD + B ifc = InFCSet A ax ifc + zc6 : (ifc : InFiniteIChain A ax ) → ¬ SUP A (B ifc) zc6 = {!!} - FC-is-total : IsTotalOrderSet FC - FC-is-total = {!!} - FC⊆A : FC ⊆ A - FC⊆A = {!!} + FC-is-total : (ifc : InFiniteIChain A ax) → IsTotalOrderSet (B ifc) + FC-is-total ifc = ChainClosure-is-total A ax PO ifc + B⊆A : (ifc : InFiniteIChain A ax) → B ifc ⊆ A + B⊆A = {!!} + ifc : InFiniteIChain A (subst (OD.def (od A)) (sym &iso) ax) → InFiniteIChain A ax + ifc record { chain<x = chain<x ; c-infinite = c-infinite } = record { chain<x = ? ; c-infinite = ? } zc5 : InFiniteIChain A (subst (OD.def (od A)) (sym &iso) ax) → ⊥ - zc5 x = zc6 x ( supP FC FC⊆A FC-is-total ) + zc5 x = zc6 (ifc x) ( supP (B (ifc x)) (B⊆A (ifc x)) (FC-is-total (ifc x) )) ind x prev | no ¬ox with trio< (& A) x --- limit ordinal case ... | tri< a ¬b ¬c = {!!} where zc1 : ZChain A (& A)