Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 692:38103b4e6780
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 11 Jul 2022 05:50:49 +0900 |
parents | 46d05d12df57 |
children | a3b7f1e0ca60 |
files | src/zorn.agda |
diffstat | 1 files changed, 11 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Jul 11 05:18:41 2022 +0900 +++ b/src/zorn.agda Mon Jul 11 05:50:49 2022 +0900 @@ -263,10 +263,9 @@ record ChainP (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (chainf : Ordinal → HOD) (sup z : Ordinal) : Set n where field asup : odef A sup - y<sup : y o< sup - y<<sup : y << sup + fcy<sup : {z : Ordinal } → FClosure A f y z → z << sup csupz : odef (chainf sup) z - order : (sup1 z1 : Ordinal) → (lt : sup1 o< sup ) → odef (chainf sup1 ) z1 → z1 << z + order : {sup1 z1 : Ordinal} → (lt : sup1 o< sup ) → odef (chainf sup1 ) z1 → z1 << sup data Chain (A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) (chainf : Ordinal → HOD) : Ordinal → Ordinal → Set n where ch-init : (z : Ordinal) → FClosure A f y z → Chain A f mf ay chainf y z @@ -315,14 +314,14 @@ ct-ind xa xb {a} {b} (ch-init a fca) (ch-init b fcb) = fcn-cmp y f mf fca fcb ct-ind xa xb {a} {b} (ch-init a fca) (ch-is-sup supb fcb) = tri< ct01 (λ eq → <-irr (case1 (sym eq)) ct01) (λ lt → <-irr (case2 ct01) lt) where ct00 : * a < * xb - ct00 = {!!} + ct00 = ChainP.fcy<sup supb fca ct01 : * a < * b ct01 with s≤fc xb f mf fcb ... | case1 eq = subst (λ k → * a < k ) eq ct00 ... | case2 lt = IsStrictPartialOrder.trans POO ct00 lt ct-ind xa xb {a} {b} (ch-is-sup supa fca) (ch-init b fcb)= tri> (λ lt → <-irr (case2 ct01) lt) (λ eq → <-irr (case1 eq) ct01) ct01 where ct00 : * b < * xa - ct00 = {!!} + ct00 = ChainP.fcy<sup supa fcb ct01 : * b < * a ct01 with s≤fc xa f mf fca ... | case1 eq = subst (λ k → * b < k ) eq ct00 @@ -330,7 +329,7 @@ ct-ind xa xb {a} {b} (ch-is-sup supa fca) (ch-is-sup supb fcb) with trio< xa xb ... | tri< a₁ ¬b ¬c = tri< ct02 (λ eq → <-irr (case1 (sym eq)) ct02) (λ lt → <-irr (case2 ct02) lt) where ct03 : * a < * xb - ct03 = {!!} + ct03 = ChainP.order supb a₁ (ChainP.csupz supa) ct02 : * a < * b ct02 with s≤fc xb f mf fcb ... | case1 eq = subst (λ k → * a < k ) eq ct03 @@ -338,7 +337,7 @@ ... | tri≈ ¬a refl ¬c = fcn-cmp xa f mf fca fcb ... | tri> ¬a ¬b c = tri> (λ lt → <-irr (case2 ct04) lt) (λ eq → <-irr (case1 (eq)) ct04) ct04 where ct05 : * b < * xa - ct05 = {!!} + ct05 = ChainP.order supa c (ChainP.csupz supb) ct04 : * b < * a ct04 with s≤fc xa f mf fca ... | case1 eq = subst (λ k → * b < k ) eq ct05 @@ -517,10 +516,14 @@ pzc z z<x = prev z z<x UZ : HOD UZ = UnionCF A x pchainf + chainf0 : (z : Ordinal ) → HOD + chainf0 z with o≤? x z + ... | yes _ = UZ + ... | no z<x = ZChain1.chainf (pzc z (o¬≤→< z<x)) z total-UZ : IsTotalOrderSet UZ total-UZ {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) - uz01 = chain-total A f mf ay {!!} {!!} {!!} + uz01 = chain-total A f mf ay chainf0 {!!} {!!} -- (ZChain1.is-chain (pzc _ (UChain.u<x (proj2 ca))) _ _ (UChain.chain∋z (proj2 ca))) -- (ZChain1.is-chain (pzc _ (UChain.u<x (proj2 cb))) _ _ (UChain.chain∋z (proj2 cb))) usup : SUP A UZ