Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 542:3826221c61a6
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 26 Apr 2022 16:10:30 +0900 |
parents | f3e2cbd07e7c |
children | f0b45446c7ea |
files | src/zorn.agda |
diffstat | 1 files changed, 40 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Apr 25 17:51:24 2022 +0900 +++ b/src/zorn.agda Tue Apr 26 16:10:30 2022 +0900 @@ -199,7 +199,7 @@ chain⊆A : chain ⊆ A chain∋x : odef chain x f-total : IsTotalOrderSet chain - f-next : {a : Ordinal } → odef chain a → odef chain (f a) + f-next : {a : Ordinal } → odef chain a → a o< z → odef chain (f a) f-immediate : { x y : Ordinal } → odef chain x → odef chain y → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) ) is-max : {a b : Ordinal } → (ca : odef chain a ) → (ba : odef A b) → a o< z → Prev< A chain ba f @@ -281,7 +281,7 @@ ... | case1 eq = ⊥-elim ( ne (cong (&) eq) ) ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt z14 : f (& (SUP.sup (sp0 f mf zc))) ≡ & (SUP.sup (sp0 f mf zc)) - z14 with IsStrictTotalOrder.compare (ZChain.f-total zc ) (me (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12))) (me z12 ) + z14 with IsStrictTotalOrder.compare (ZChain.f-total zc ) (me (subst (λ k → odef chain k) (sym &iso) (ZChain.f-next zc z12 {!!} ))) (me z12 ) ... | tri< a ¬b ¬c = ⊥-elim z16 where z16 : ⊥ z16 with proj1 (mf (& ( SUP.sup sp1)) ( SUP.A∋maximal sp1 )) @@ -290,7 +290,7 @@ ... | tri≈ ¬a b ¬c = subst ( λ k → k ≡ & (SUP.sup sp1) ) &iso ( cong (&) b ) ... | tri> ¬a ¬b c = ⊥-elim z17 where z15 : (* (f ( & ( SUP.sup sp1 ))) ≡ SUP.sup sp1) ∨ (* (f ( & ( SUP.sup sp1 ))) < SUP.sup sp1) - z15 = SUP.x<sup sp1 (subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) (ZChain.f-next zc z12) ) + z15 = SUP.x<sup sp1 (subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) (ZChain.f-next zc z12 {!!} ) ) z17 : ⊥ z17 with z15 ... | case1 eq = ¬b eq @@ -324,7 +324,7 @@ zc0 : ZChain A sa f mf supO (Oprev.oprev op) zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc) zc1 : ZChain A sa f mf supO x - zc1 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; f-immediate = {!!} + zc1 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = ZChain.chain∋x zc0 ; is-max = {!!} } ... | yes ax = zc4 where -- we have previous ordinal and A ∋ x px = Oprev.oprev op @@ -335,37 +335,62 @@ -- x has no y which y < x zc4 : ZChain A sa f mf supO x zc4 with ODC.p∨¬p O ( Prev< A (ZChain.chain zc0) ax f ) - ... | case1 y = zc7 where + ... | case1 y = zc7 where -- we have previous < chain = ZChain.chain zc0 zc7 : ZChain A sa f mf supO x zc7 with ODC.∋-p O (ZChain.chain zc0) (* ( f x ) ) - ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } -- no extention ... | no not = record { chain = zc5 ; chain⊆A = ⊆-zc5 ; f-total = zc6 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = {!!} } where - -- extend with f x + -- extend with f x -- cahin ∋ y ∧ chain ∋ f y ∧ x ≡ f ( f y ) zc5 : HOD zc5 = record { od = record { def = λ z → odef (ZChain.chain zc0) z ∨ (z ≡ f x) } ; odmax = & A ; <odmax = {!!} } ⊆-zc5 : zc5 ⊆ A ⊆-zc5 = record { incl = λ lt → {!!} } IPO = ⊆-IsPartialOrderSet ⊆-zc5 PO - fx>zc : ( z : Ordinal ) → odef (ZChain.chain zc0) z → * z < * ( f x ) - fx>zc = {!!} + zc8 : { A B x : HOD } → (ax : A ∋ x ) → (P : Prev< A B ax f ) → * (f (& (* (Prev<.y P)))) ≡ x + zc8 {A} {B} {x} ax P = subst₂ (λ j k → * ( f j ) ≡ k ) (sym &iso) *iso (sym (cong (*) ( Prev<.x=fy P))) + fx=zc : odef (ZChain.chain zc0) x → Tri (* (f x) < * x ) (* (f x) ≡ * x) (* x < * (f x) ) + fx=zc c with mf x (subst (λ k → odef A k) &iso ax ) + ... | ⟪ case1 x=fx , afx ⟫ = tri≈ {!!} zc13 {!!} where + zc13 : * (f x) ≡ * x + zc13 = subst (λ k → k ≡ * x ) (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym &iso))) (sym ( x=fx )) + ... | ⟪ case2 x<fx , afx ⟫ = tri> {!!} {!!} zc14 where + zc14 : * x < * (f x) + zc14 = subst₂ (λ j k → j < k ) {!!} (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym &iso ))) x<fx cmp : Trichotomous _ _ cmp record { elm = a ; is-elm = aa } record { elm = b ; is-elm = ab } with aa | ab ... | case1 x | case1 x₁ = IsStrictTotalOrder.compare (ZChain.f-total zc0) (me x) (me x₁) - ... | case1 c | case2 fx = {!!} - ... | case2 x | case1 x₁ = {!!} - ... | case2 x | case2 x₁ = tri≈ {!!} (subst₂ (λ j k → j ≡ k ) *iso *iso (trans (cong (*) x) (sym (cong (*) x₁ ) ))) {!!} + ... | case2 fx | case2 fx₁ = tri≈ {!!} (subst₂ (λ j k → j ≡ k ) *iso *iso (trans (cong (*) fx) (sym (cong (*) fx₁ ) ))) {!!} + ... | case1 c | case2 fx = {!!} -- subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) {!!} {!!} ( fx>zc (subst (λ k → odef chain k) {!!} c )) + ... | case2 fx | case1 c with ODC.p∨¬p O ( Prev< A chain (incl (ZChain.chain⊆A zc0) c) f ) + ... | case2 n = {!!} + ... | case1 fb with IsStrictTotalOrder.compare (ZChain.f-total zc0) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay y))) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay fb))) + ... | tri< a₁ ¬b ¬c = {!!} + ... | tri≈ ¬a b₁ ¬c = subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) {!!} {!!} ( fx=zc (subst (λ k → odef chain k) {!!} c )) where + zc11 : & a ≡ f x + zc11 = fx + zc10 : * x ≡ b + zc10 = subst₂ (λ j k → j ≡ k ) (zc8 ax y ) (zc8 (incl ( ZChain.chain⊆A zc0 ) c) fb) (cong (λ k → * ( f ( & k ))) b₁) + zc12 : Tri (a < b) (a ≡ b) (b < a) + zc12 with mf x (subst (λ k → odef A k) &iso ax ) + ... | ⟪ case1 x=fx , afx ⟫ = tri≈ {!!} zc13 {!!} where + zc13 : a ≡ b + zc13 = subst₂ (λ j k → j ≡ k ) (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym zc11))) zc10 (sym ( x=fx )) + ... | ⟪ case2 x<fx , afx ⟫ = tri> {!!} {!!} zc14 where + zc14 : b < a + zc14 = subst₂ (λ j k → j < k ) zc10 (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym zc11))) x<fx + ... | tri> ¬a ¬b c₁ = {!!} zc6 : IsTotalOrderSet zc5 zc6 = record { isEquivalence = IsStrictPartialOrder.isEquivalence IPO ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} ; compare = cmp } ... | case2 not with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) {!!} {!!} ) )) - ... | case1 y = {!!} - ... | case2 not = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ... | case1 y = {!!} -- x is sup + ... | case2 not = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = ZChain.chain∋x zc0 ; is-max = {!!} } -- no extention ind f mf x prev | no ¬ox with trio< (& A) x --- limit ordinal case - ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 + ... | tri< a ¬b ¬c = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } where zc0 = prev (& A) a ... | tri≈ ¬a b ¬c = {!!}