Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 130:3849614bef18
new replacement axiom
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 Jul 2019 15:59:07 +0900 |
parents | 2a5519dcc167 |
children | 5dcd5a3583a0 |
files | HOD.agda ordinal-definable.agda zf.agda |
diffstat | 3 files changed, 24 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Tue Jul 02 09:28:26 2019 +0900 +++ b/HOD.agda Tue Jul 02 15:59:07 2019 +0900 @@ -342,7 +342,10 @@ ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} - ; replacement = replacement + ; reverse = ? + ; reverse-∈ = ? + ; replacement← = ? + ; replacement→ = ? } where pair : (A B : HOD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) @@ -375,6 +378,7 @@ minsup = ZFSubset (Ord a) ( ord→od ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x))))) Ltx : {n : Level} → {x t : HOD {suc n}} → t ∋ x → Ord (od→ord t) ∋ x Ltx {n} {x} {t} lt = c<→o< lt + -- lemma1 hold because minsup is Ord (minα a sp) lemma1 : od→ord (Ord (od→ord t)) o< od→ord minsup → minsup ∋ Ord (od→ord t) lemma1 lt with OrdSubset a ( sup-x (λ x → od→ord ( ZFSubset (Ord a) (ord→od x)))) ... | eq with subst ( λ k → ZFSubset (Ord a) k ≡ Ord (minα a sp)) Ord-ord eq @@ -391,7 +395,6 @@ ≡⟨ sym eq1 ⟩ minsup ∎ - -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t @@ -410,10 +413,18 @@ lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) lemma = sup-o< + -- Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x power→ = {!!} power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t - power← = {!!} + power← A t t→A = def-subst {suc n} {Replace (Def (Ord a)) ψ} {_} {Power A} {od→ord t} (sup-c< ψ {t}) lemma2 lemma1 where + a = od→ord A + ψ : HOD → HOD + ψ y = Def (Ord a) ∩ y + lemma1 : od→ord (Def (Ord a) ∩ t) ≡ od→ord t + lemma1 = {!!} + lemma2 : Ord ( sup-o ( λ x → od→ord (ψ (ord→od x )))) ≡ Power A + lemma2 = {!!} union-u : {X z : HOD {suc n}} → (U>z : Union X ∋ z ) → HOD {suc n} union-u {X} {z} U>z = Ord ( osuc ( od→ord z ) )
--- a/ordinal-definable.agda Tue Jul 02 09:28:26 2019 +0900 +++ b/ordinal-definable.agda Tue Jul 02 15:59:07 2019 +0900 @@ -308,7 +308,7 @@ ; isZF = isZF } where Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} - Replace X ψ = sup-od ψ + Replace X ψ = record { def = λ x → ( X ∋ ord→od x ) ∧ (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) } Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} Select X ψ = record { def = λ x → ((y : Ordinal {suc n}) → def X y → ψ ( ord→od y )) ∧ def X x } _,_ : OD {suc n} → OD {suc n} → OD {suc n} @@ -346,7 +346,10 @@ ; infinity∅ = infinity∅ ; infinity = λ _ → infinity ; selection = λ {X} {ψ} {y} → selection {ψ} {X} {y} - ; replacement = replacement + ; repl-x = λ {ψ} {X} {x} lt → Ord (sup-x (λ x → od→ord (ψ (ord→od x)))) + ; repl-x-∈ = λ {ψ} {X} {x} lt → {!!} + ; replacement← = {!!} + ; replacement→ = {!!} } where pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) @@ -412,7 +415,7 @@ lemma : (cond : ((y : OD) → X ∋ y → ψ y ) ∧ (X ∋ y) ) → ψ y lemma cond = (proj1 cond) y (proj2 cond) replacement : {ψ : OD → OD} (X x : OD) → Replace X ψ ∋ ψ x - replacement {ψ} X x = sup-c< ψ {x} + replacement {ψ} X x = {!!} -- sup-c< ψ {x} ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n}
--- a/zf.agda Tue Jul 02 09:28:26 2019 +0900 +++ b/zf.agda Tue Jul 02 15:59:07 2019 +0900 @@ -77,7 +77,10 @@ infinity : ∀( X x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite selection : ∀ { X : ZFSet } → { ψ : (x : ZFSet ) → Set m } → ∀ { y : ZFSet } → (((y : ZFSet) → y ∈ X → ψ y ) ∧ ( y ∈ X ) ) ⇔ (y ∈ Select X ψ ) -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) - replacement : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( ψ x ∈ Replace X ψ ) + repl-x : {ψ : ZFSet → ZFSet} → { X x : ZFSet } ( lt : x ∈ Replace X ψ ) → ZFSet + repl-x-∈ : {ψ : ZFSet → ZFSet} → { X x : ZFSet } → (lt : x ∈ Replace X ψ ) → repl-x lt ∈ X + replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → x ∈ X → ψ x ∈ Replace X ψ + replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( lt : x ∈ Replace X ψ ) → x ≈ ψ ( repl-x lt ) -- -- ∀ z [ ∀ x ( x ∈ z → ¬ ( x ≈ ∅ ) ) ∧ ∀ x ∀ y ( x , y ∈ z ∧ ¬ ( x ≈ y ) → x ∩ y ≈ ∅ ) → ∃ u ∀ x ( x ∈ z → ∃ t ( u ∩ x) ≈ { t }) ] -- axiom-of-choice : Set (suc n) -- axiom-of-choice = ?