Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 192:38ecc75d93ce
does not work
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 28 Jul 2019 14:50:56 +0900 |
parents | 9eb6a8691f02 |
children | 0b9645a65542 |
files | OD.agda |
diffstat | 1 files changed, 6 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 28 14:07:08 2019 +0900 +++ b/OD.agda Sun Jul 28 14:50:56 2019 +0900 @@ -501,14 +501,12 @@ choice X {A} X∋A not = x∋minimul A not choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → OD {suc n} - choice-func' X ∋-p not = lemma (lv (od→ord X )) (ord (od→ord X)) where - lemma : (lx : Nat ) ( ox : OrdinalD lx ) → OD {suc n} - lemma lx ox with ∋-p X (ord→od record { lv = lx ; ord = ox }) - lemma lx ox | yes p = (ord→od record { lv = lx ; ord = ox }) - lemma Zero (Φ 0) | no ¬p = od∅ - lemma Zero (OSuc 0 ox) | no ¬p = lemma Zero ox - lemma (Suc lx) (Φ (Suc lx)) | no ¬p = {!!} - lemma (Suc lx) (OSuc (Suc lx) ox) | no ¬p = lemma ( Suc lx ) ox + choice-func' X ∋-p not = lemma o∅ {!!} {!!} where + lemma : (ox : Ordinal {suc n} ) → ( ox o< osuc (od→ord X) ) → ((oy : Ordinal ) → oy o< ox → ¬ ( X ∋ ord→od oy ) ) → OD {suc n} + lemma ox lt l∅ with ∋-p X (ord→od ox) + lemma ox lt l∅ | yes p = ord→od ox + lemma ox (case1 x) l∅ | no ¬p = lemma (record { lv = Suc (lv ox); ord = Φ (Suc (lv ox))}) (case1 {!!}) {!!} + lemma ox (case2 x) l∅ | no ¬p = lemma (record { lv = lv ox; ord = OSuc (lv ox) (ord ox)}) {!!} {!!} -- -- another form of regularity