Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 412:38eded55c72d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 30 Jul 2020 00:29:50 +0900 |
parents | 6eaab908130e |
children | b00d58b3dc57 |
files | generic-filter.agda |
diffstat | 1 files changed, 41 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/generic-filter.agda Wed Jul 29 21:51:00 2020 +0900 +++ b/generic-filter.agda Thu Jul 30 00:29:50 2020 +0900 @@ -143,32 +143,10 @@ open _⊆_ -ω→2f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω→2f X lt ) =h= X -ω→2f-iso X lt = record { - eq→ = eq1 - ; eq← = eq2 - } where - X⊆ω : {x : HOD } → X ∋ x → infinite ∋ x - X⊆ω {x} x<X = incl (ODC.power→⊆ O infinite X lt ) x<X - eq1 : {x : Ordinal} → odef (fω→2 (ω→2f X lt)) x → odef X x - eq1 {x} fx = {!!} where - x-nat : odef infinite x - x-nat = subst (λ k → odef infinite k) diso ( ODC.double-neg-eilm O - (power→ infinite _ (ω2∋f (ω→2f X lt)) (d→∋ (fω→2 (ω→2f X lt)) fx ))) - i : Nat - i = ω→nat (ord→od x) (d→∋ infinite x-nat) - is-i1 : ω→2f X lt i ≡ i1 - is-i1 = {!!} - eq2 : {x : Ordinal} → odef X x → odef (fω→2 (ω→2f X lt)) x - eq2 {x} Xx = {!!} where - x-nat : odef infinite x - x-nat = subst ( λ k → odef infinite k ) diso ( X⊆ω (subst(λ k → odef X k ) (sym diso ) Xx) ) - -fω→2-iso : (f : Nat → Two) → ω→2f ( fω→2 f ) (ω2∋f f) ≡ f -fω→2-iso f = f-extensionality (λ x → eq1 x ) where - eq1 : (x : Nat) → ω→2f (fω→2 f) (ω2∋f f) x ≡ f x - eq1 x = {!!} - +-- someday ... +postulate + ω→2f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω→2f X lt ) =h= X + fω→2-iso : (f : Nat → Two) → ω→2f ( fω→2 f ) (ω2∋f f) ≡ f ↑n : (f n : HOD) → ((ω→2 ∋ f ) ∧ (infinite ∋ n)) → HOD ↑n f n lt = 3→Hω2 ( ω→2f f (proj1 lt) 3↑ (ω→nat n (proj2 lt) )) @@ -193,41 +171,70 @@ open CountableOrdinal open CountableHOD +---- +-- a(n) ∈ M +-- ∃ q ∈ Power P → q ∈ a(n) ∧ p(n) ⊆ q +-- PGHOD : (i : Nat) → (C : CountableOrdinal) → (P : HOD) → (p : Ordinal) → HOD -PGHOD i C P p = record { od = record { def = λ x → odef P x ∧ odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } +PGHOD i C P p = record { od = record { def = λ x → + odef P x ∧ odef (ord→od (ctl→ C i)) x ∧ ( (y : Ordinal ) → odef (ord→od p) y → odef (ord→od x) y ) } ; odmax = odmax P ; <odmax = λ {y} lt → <odmax P (proj1 lt) } +--- +-- p(n+1) = if PGHOD n qn otherwise p(n) +-- next-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (p : Ordinal) → Ordinal next-p C P i p with ODC.decp O ( PGHOD i C P p =h= od∅ ) next-p C P i p | yes y = p next-p C P i p | no not = od→ord (ODC.minimal O (PGHOD i C P p ) not) +--- +-- ascendant search on p(n) +-- find-p : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x : Ordinal) → Ordinal find-p C P Zero x = x find-p C P (Suc i) x = find-p C P i ( next-p C P i x ) +--- +-- G = { r ∈ Power P | ∃ n → r ⊆ p(n) } +-- record PDN (C : CountableOrdinal) (P : HOD ) (x : Ordinal) : Set n where field gr : Nat pn<gr : (y : Ordinal) → odef (ord→od x) y → odef (ord→od (find-p C P gr o∅)) y - px∈ω : odef P x + px∈ω : odef (Power P) x open PDN +--- +-- G as an HOD +-- PDHOD : (C : CountableOrdinal) → (P : HOD ) → HOD PDHOD C P = record { od = record { def = λ x → PDN C P x } - ; odmax = odmax (Power P) ; <odmax = {!!} } where + ; odmax = odmax (Power P) ; <odmax = λ {y} lt → <odmax (Power P) {y} (PDN.px∈ω lt) } where -- -- p 0 ≡ ∅ -- p (suc n) = if ∃ q ∈ ord→od ( ctl→ n ) ∧ p n ⊆ q → q --- else p n +open PDN + +---- +-- Generic Filter on Power P for HOD's Ordinal +-- P-GenericFilter : (C : CountableOrdinal) → (P : HOD ) → GenericFilter P P-GenericFilter C P = record { - genf = record { filter = PDHOD C P ; f⊆PL = {!!} ; filter1 = {!!} ; filter2 = {!!} } + genf = record { filter = PDHOD C P ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } ; generic = λ D → {!!} - } + } where + find-p-⊆P : (C : CountableOrdinal) (P : HOD ) (i : Nat) → (x y : Ordinal) → odef (ord→od (find-p C P i x)) y → odef P y + find-p-⊆P C P Zero x y Py = {!!} + find-p-⊆P C P (Suc i) x y Py = {!!} -- find-p-⊆P C P i x {!!} + f⊆PL : PDHOD C P ⊆ Power P + f⊆PL = record { incl = λ {x} lt → power← P x (λ {y} y<x → + find-p-⊆P C P (gr lt) o∅ (od→ord y) (pn<gr lt (od→ord y) (subst (λ k → odef k (od→ord y)) (sym oiso) y<x))) } + open GenericFilter open Filter @@ -235,11 +242,11 @@ record Incompatible (P : HOD ) : Set (suc (suc n)) where field except : HOD → ( HOD ∧ HOD ) - incompatible : { p : HOD } → P ∋ p → P ∋ proj1 (except p ) → P ∋ proj2 (except p ) + incompatible : { p : HOD } → Power P ∋ p → Power P ∋ proj1 (except p ) → Power P ∋ proj2 (except p ) → ( p ⊆ proj1 (except p) ) ∧ ( p ⊆ proj2 (except p) ) - → ∀ ( r : HOD ) → P ∋ r → ¬ (( proj1 (except p) ⊆ r ) ∧ ( proj2 (except p) ⊆ r )) + → ∀ ( r : HOD ) → Power P ∋ r → ¬ (( proj1 (except p) ⊆ r ) ∧ ( proj2 (except p) ⊆ r )) -lemma725 : (M : CountableHOD ) (C : CountableOrdinal) (P : HOD ) → mhod M ∋ P +lemma725 : (M : CountableHOD ) (C : CountableOrdinal) (P : HOD ) → mhod M ∋ Power P → Incompatible P → ¬ ( mhod M ∋ filter ( genf ( P-GenericFilter C P ))) lemma725 = {!!}