Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 620:3938bed729a5
min-sup
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 18 Jun 2022 12:28:09 +0900 |
parents | e766238b69d2 |
children | 267a44ce18b5 |
files | src/OD.agda src/zorn.agda |
diffstat | 2 files changed, 16 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/src/OD.agda Sat Jun 18 10:16:19 2022 +0900 +++ b/src/OD.agda Sat Jun 18 12:28:09 2022 +0900 @@ -99,6 +99,7 @@ *iso : {x : HOD } → * ( & x ) ≡ x &iso : {x : Ordinal } → & ( * x ) ≡ x ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y +-- these are valid theorem because of the TransFinite induction (but we leave it now) sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ -- possible order restriction
--- a/src/zorn.agda Sat Jun 18 10:16:19 2022 +0900 +++ b/src/zorn.agda Sat Jun 18 12:28:09 2022 +0900 @@ -232,6 +232,7 @@ record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where field x<sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) + min-sup : {z : Ordinal} → ( {y : Ordinal} → odef B y → (y ≡ z ) ∨ (y << z ) ) → x o≤ z record ZChain ( A : HOD ) (x : Ordinal) ( f : Ordinal → Ordinal ) ( z : Ordinal ) : Set (Level.suc n) where field @@ -349,7 +350,7 @@ ... | case1 eq = ⊥-elim ( ne (cong (&) eq) ) ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt z19 : IsSup A chain {& (SUP.sup sp1)} (SUP.A∋maximal sp1) - z19 = record { x<sup = z20 } where + z19 = record { x<sup = z20 ; min-sup = {!!} } where z20 : {y : Ordinal} → odef chain y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1)) z20 {y} zy with SUP.x<sup sp1 (subst (λ k → odef chain k ) (sym &iso) zy) ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p )) @@ -376,8 +377,8 @@ -- ZChain forces fix point on any ≤-monotonic function (fixpoint) -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain -- - z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (& s) (cf nmx) (& A)) → ⊥ - z04 nmx zc = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1)))) + ¬Maximal→¬ZChain : (nmx : ¬ Maximal A ) → (zc : ZChain A (& s) (cf nmx) (& A)) → ⊥ + ¬Maximal→¬ZChain nmx zc = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1)))) (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) -- x ≡ f x ̄ (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where -- x < f x @@ -446,7 +447,7 @@ zc9 = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 -- no extention ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = zc17 } ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc0) ax ) - ... | case1 is-sup = -- x is a sup of zc0 + ... | case1 is-sup = -- x is the min sup of zc0 record { chain = schain ; chain⊆A = s⊆A ; f-total = scmp ; f-next = scnext ; initial = scinit ; f-immediate = simm ; chain∋x = case1 (ZChain.chain∋x zc0) ; is-max = s-ismax } where sup0 : SUP A (ZChain.chain zc0) @@ -536,18 +537,18 @@ z21 record { y = y ; ay = (case2 sy) ; x=fy = x=fy } = subst (λ k → odef schain k) (sym x=fy) (case2 (fsuc y sy) ) s-ismax {a} {b} (case1 za) b<ox ab (case2 p) a<b | case2 b<x = case1 (ZChain.is-max zc0 za (zc0-b<x b b<x) ab (case2 z22) a<b ) where -- previous sup z22 : IsSup A (ZChain.chain zc0) ab - z22 = record { x<sup = λ {y} zy → IsSup.x<sup p (case1 zy ) } + z22 = record { x<sup = λ {y} zy → IsSup.x<sup p (case1 zy ) ; min-sup = {!!} } s-ismax {a} {b} (case2 sa) b<ox ab (case1 p) a<b | case2 b<x with HasPrev.ay p - ... | case1 zy = case1 (subst (λ k → odef chain0 k ) (sym (HasPrev.x=fy p)) (ZChain.f-next zc0 zy )) -- in previous closure of f + ... | case1 zy = case1 (subst (λ k → odef chain0 k ) (sym (HasPrev.x=fy p)) (ZChain.f-next zc0 zy )) -- in previous closure of f ... | case2 sy = case2 (subst (λ k → FClosure A f (& (* x)) k ) (sym (HasPrev.x=fy p)) (fsuc (HasPrev.y p) sy )) -- in current closure of f s-ismax {a} {b} (case2 sa) b<ox ab (case2 p) a<b | case2 b<x = case1 z23 where -- sup o< x is already in zc0 z24 : IsSup A schain ab → IsSup A (ZChain.chain zc0) ab - z24 p = record { x<sup = λ {y} zy → IsSup.x<sup p (case1 zy ) } + z24 p = record { x<sup = λ {y} zy → IsSup.x<sup p (case1 zy ) ; min-sup = {!!} } z23 : odef chain0 b z23 with IsSup.x<sup (z24 p) ( ZChain.chain∋x zc0 ) ... | case1 y=b = subst (λ k → odef chain0 k ) y=b ( ZChain.chain∋x zc0 ) ... | case2 y<b = ZChain.is-max zc0 (ZChain.chain∋x zc0 ) (zc0-b<x b b<x) ab (case2 (z24 p)) y<b - ... | case2 ¬x=sup = -- x is not f y' nor sup of former ZChain from y + ... | case2 ¬x=sup = -- x is not f y' nor min-sup of former ZChain from y record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 ; initial = ZChain.initial zc0 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = ZChain.chain∋x zc0 ; is-max = z18 } where -- no extention @@ -559,7 +560,7 @@ ... | case1 b=x with p ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) ... | case2 b=sup = ⊥-elim ( ¬x=sup record { - x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) + x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) ; min-sup = {!!} } ) ... | no ¬ox with trio< x y ... | tri< a ¬b ¬c = init-chain ay f mf {!!} ... | tri≈ ¬a b ¬c = init-chain ay f mf {!!} @@ -643,16 +644,16 @@ zorn01 = proj1 zorn03 zorn02 : {x : HOD} → A ∋ x → ¬ (ODC.minimal O HasMaximal (λ eq → not (=od∅→≡o∅ eq)) < x) zorn02 {x} ax m<x = proj2 zorn03 (& x) ax (subst₂ (λ j k → j < k) (sym *iso) (sym *iso) m<x ) - ... | yes ¬Maximal = ⊥-elim ( z04 nmx zorn04) where + ... | yes ¬Maximal = ⊥-elim ( ¬Maximal→¬ZChain nmx max-chain-mf) where -- if we have no maximal, make ZChain, which contradict SUP condition nmx : ¬ Maximal A nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ - zorn03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (ya : odef A (& s)) → ZChain A (& s) f (& A) - zorn03 f mf = TransFinite {λ z → {y : Ordinal } → (ya : odef A y ) → ZChain A y f z } (ind f mf) (& A) - zorn04 : ZChain A (& s) (cf nmx) (& A) - zorn04 = zorn03 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) + max-chain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (ya : odef A (& s)) → ZChain A (& s) f (& A) + max-chain f mf = TransFinite {λ z → {y : Ordinal } → (ya : odef A y ) → ZChain A y f z } (ind f mf) (& A) + max-chain-mf : ZChain A (& s) (cf nmx) (& A) + max-chain-mf = max-chain (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) -- usage (see filter.agda ) --