Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 797:3a8493e6cd67
supf contraint
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Aug 2022 15:06:58 +0900 |
parents | 171123c92007 |
children | 9cf74877efab |
files | src/zorn.agda |
diffstat | 1 files changed, 86 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Aug 05 17:57:41 2022 +0900 +++ b/src/zorn.agda Sat Aug 06 15:06:58 2022 +0900 @@ -226,8 +226,30 @@ sup : {x : Ordinal } → x o≤ z → SUP A (UnionCF A f mf ay supf x) sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b supf-is-sup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ & (SUP.sup (sup x≤z) ) - csupf : {b : Ordinal } → b o< z → odef (UnionCF A f mf ay supf b) (supf b) - supf-mono : {x y : Ordinal } → x o< y → supf x o≤ supf y + csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) + supf≤x :{x : Ordinal } → z o≤ x → supf z ≡ supf x + supf-mono : {x y : Ordinal } → x o< y → supf x o≤ supf y + supf-mono {x} {y} x<y = ? where + -- z o≤ x → supf x ≡ supf y ≡ supf z + -- x o< z → z o< y → supf x ≡ supf y ≡ supf z + sf<sy : supf x o≤ supf y + sf<sy with trio< x z + ... | tri> ¬a ¬b c = o≤-refl0 (( trans (sym (supf≤x (o<→≤ c))) (supf≤x (ordtrans (ordtrans c x<y ) <-osuc ) ) )) + ... | tri≈ ¬a b ¬c = o≤-refl0 (trans (sym (supf≤x (o≤-refl0 (sym b)))) (supf≤x (subst (λ k → k o< osuc y) b (o<→≤ x<y)))) + ... | tri< x<z ¬b ¬c with trio< y z + ... | tri> ¬a ¬b c = ? + ... | tri≈ ¬a b ¬c = ? + ... | tri< y<z ¬b ¬c with csupf (o<→≤ x<z) | csupf (o<→≤ y<z) + ... | ⟪ ax , ch-init fcx ⟫ | ⟪ ay , ch-init fcy ⟫ = ? + ... | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-init fcy ⟫ = ? + ... | ⟪ ax , ch-init fcx ⟫ | ⟪ ay , ch-is-sup uy uy≤z is-sup-y fcy ⟫ = ? + ... | ⟪ ax , ch-is-sup ux ux≤z is-sup-x fcx ⟫ | ⟪ ay , ch-is-sup uy uy≤z is-sup-y fcy ⟫ = ? + -- ... | tri< a ¬b ¬c = csupf (o<→≤ a) + -- ... | tri≈ ¬a b ¬c = csupf (o≤-refl0 b) + -- ... | tri> ¬a ¬b c = subst (λ k → odef (UnionCF A f mf ay supf x) k ) ? (csupf ? ) + -- csy : odef (UnionCF A f mf ay supf y) (supf y) + -- csy = csupf ? + fcy<sup : {u w : Ordinal } → u o< z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf fcy<sup {u} {w} u<z fc with SUP.x<sup (sup (o<→≤ u<z)) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ @@ -235,8 +257,8 @@ ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup (o<→≤ u<z) ))) ) lt ) order : {b s z1 : Ordinal} → b o< z → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) order {b} {s} {z1} b<z sf<sb fc = zc04 where - zc01 : {z1 : Ordinal } → FClosure A f (supf s) z1 → UnionCF A f mf ay supf b ∋ * z1 - zc01 (init x refl ) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc03 where + zc01 : {z1 : Ordinal } → FClosure A f (supf s) z1 → UnionCF A f mf ay supf b ∋ * z1 + zc01 (init x refl ) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc03 where s<b : s o< b s<b with trio< s b ... | tri< a ¬b ¬c = a @@ -247,20 +269,20 @@ s<z : s o< z s<z = ordtrans s<b b<z zc03 : odef (UnionCF A f mf ay supf b) (supf s) - zc03 with csupf s<z + zc03 with csupf (o<→≤ s<z ) ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ordtrans u≤x (osucc s<b)) is-sup fc ⟫ - zc01 (fsuc x fc) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc04 where + zc01 (fsuc x fc) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc04 where zc04 : odef (UnionCF A f mf ay supf b) (f x) zc04 with subst (λ k → odef (UnionCF A f mf ay supf b) k ) &iso (zc01 fc ) ... | ⟪ as , ch-init fc ⟫ = ⟪ proj2 (mf _ as) , ch-init (fsuc _ fc) ⟫ ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf _ as) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ - zc00 : ( * z1 ≡ SUP.sup (sup (o<→≤ b<z) )) ∨ ( * z1 < SUP.sup ( sup (o<→≤ b<z) ) ) - zc00 = SUP.x<sup (sup (o<→≤ b<z)) (zc01 fc ) - zc04 : (z1 ≡ supf b) ∨ (z1 << supf b) - zc04 with zc00 - ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso (sym (supf-is-sup (o<→≤ b<z) ) ) (cong (&) eq) ) - ... | case2 lt = case2 (subst₂ (λ j k → j < k ) refl (subst₂ (λ j k → j ≡ k ) *iso refl (cong (*) (sym (supf-is-sup (o<→≤ b<z) ) ))) lt ) + zc00 : ( * z1 ≡ SUP.sup (sup (o<→≤ b<z) )) ∨ ( * z1 < SUP.sup ( sup (o<→≤ b<z) ) ) + zc00 = SUP.x<sup (sup (o<→≤ b<z)) (zc01 fc ) + zc04 : (z1 ≡ supf b) ∨ (z1 << supf b) + zc04 with zc00 + ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso (sym (supf-is-sup (o<→≤ b<z) ) ) (cong (&) eq) ) + ... | case2 lt = case2 (subst₂ (λ j k → j < k ) refl (subst₂ (λ j k → j ≡ k ) *iso refl (cong (*) (sym (supf-is-sup (o<→≤ b<z) ) ))) lt ) record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) @@ -635,7 +657,7 @@ pchain⊆A {y} ny = proj1 ny pnext : {a : Ordinal} → odef pchain a → odef pchain (f a) pnext {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc) ⟫ - pnext {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u {!!} is-sup (fsuc _ fc ) ⟫ + pnext {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u u≤x is-sup (fsuc _ fc ) ⟫ pinit : {y₁ : Ordinal} → odef pchain y₁ → * y ≤ * y₁ pinit {a} ⟪ aa , ua ⟫ with ua ... | ch-init fc = s≤fc y f mf fc @@ -796,12 +818,61 @@ no-extension : ¬ spu ≡ x → ZChain A f mf ay x no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = {!!} - ; sup = {!!} ; supf-is-sup = {!!} - ; csupf = {!!} ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal ; supf-mono = {!!} } where + ; sup = sup ; supf-is-sup = sis + ; csupf = csupf ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal ; supf-mono = {!!} } where supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z UnionCF⊆ : {u : Ordinal} → (a : u o< x ) → UnionCF A f mf ay supf1 x ⊆' UnionCF A f mf ay (supfu a) x UnionCF⊆ = {!!} + sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) + sup {z} z≤x with trio< z x + ... | tri< a ¬b ¬c = SUP⊆ {!!} (ZChain.sup (pzc z a) o≤-refl ) + ... | tri≈ ¬a b ¬c = SUP⊆ {!!} usup + ... | tri> ¬a ¬b c = SUP⊆ {!!} usup + sis : {z : Ordinal} (x≤z : z o≤ x) → supf1 z ≡ & (SUP.sup (sup x≤z)) + sis {z} z≤x with trio< z x + ... | tri< a ¬b ¬c = ? where + zc8 = ZChain.supf-is-sup (pzc z a) o≤-refl + ... | tri≈ ¬a b ¬c = refl + ... | tri> ¬a ¬b c with osuc-≡< z≤x + ... | case1 eq = ⊥-elim ( ¬b eq ) + ... | case2 lt = ⊥-elim ( ¬a lt ) + sup=u : {b : Ordinal} (ab : odef A b) → b o< x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b + sup=u {b} ab b<x is-sup with trio< b x + ... | tri< a ¬b ¬c = ZChain.sup=u (pzc (osuc b) (ob<x lim a)) ab <-osuc record { x<sup = ? } + ... | tri≈ ¬a b ¬c = ? + ... | tri> ¬a ¬b c = ? + csupf : {z : Ordinal} → z o≤ x → odef (UnionCF A f mf ay supf1 z) (supf1 z) + csupf {z} z<x with trio< z x + ... | tri< a ¬b ¬c = zc9 where + zc9 : odef (UnionCF A f mf ay supf1 z) (ZChain.supf (pzc (osuc z) (ob<x lim a)) z) + zc9 = ? + zc8 : odef (UnionCF A f mf ay (supfu a) z) (ZChain.supf (pzc (osuc z) (ob<x lim a)) z) + zc8 = ZChain.csupf (pzc (osuc z) (ob<x lim a)) (o<→≤ <-osuc ) + ... | tri≈ ¬a b ¬c = ? -- ⊥-elim (¬a z<x) + ... | tri> ¬a ¬b c = ? -- ⊥-elim (¬a z<x) + supf-mono : {a b : Ordinal} → a o< b → supf1 a o≤ supf1 b + supf-mono {a0} {b0} a<b = zc10 where + -- x o≤ a → supf1 a ≡ supf1 b ≡ spu + -- x o≤ b → supf1 b ≡ spu + -- a o< x → b o≤ x → supf1 (supf1 a) ≡ supf1 a + -- supf1 (supf1 b) ≡ supf1 b + usa : odef (UnionCF A f mf ay (supfu ?) (osuc a0)) (supf1 a0) + usa = ? + usb : odef (UnionCF A f mf ay (supfu ?) (osuc b0)) (supf1 b0) + usb = ? + zc10 : supf1 a0 o≤ supf1 b0 + zc10 with trio< a0 x | trio< b0 x + ... | tri< a ¬b ¬c | tri< a' ¬b' ¬c' = ? where + zc11 = ZChain.supf-mono (pzc (osuc a0) (ob<x lim a)) a<b + zc12 = ZChain.supf-mono (pzc (osuc b0) (ob<x lim a')) a<b + ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c' = ? + ... | tri< a ¬b ¬c | tri> ¬a ¬b' c = ? + ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c' = ? + ... | tri≈ ¬a b ¬c | tri≈ ¬a' b' ¬c' = ? + ... | tri≈ ¬a b ¬c | tri> ¬a' ¬b c = ? + ... | tri> ¬a ¬b c | _ = ? + zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip