Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 408:3ac3704b4cb1
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Jul 2020 22:34:42 +0900 |
parents | 349d4e734403 |
children | 3fba5f805e50 |
files | OD.agda |
diffstat | 1 files changed, 5 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 20:48:24 2020 +0900 +++ b/OD.agda Tue Jul 28 22:34:42 2020 +0900 @@ -519,6 +519,9 @@ ω-prev-eq {x} {y} eq | tri≈ ¬a b ¬c = b ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = ⊥-elim (ω-prev-eq1 (sym eq) c) +ω-∈s : (x : HOD) → Union ( x , (x , x)) ∋ x +ω-∈s x not = not (od→ord (x , x)) record { proj1 = case2 refl ; proj2 = subst (λ k → odef k (od→ord x) ) (sym oiso) (case1 refl) } + nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} = ε-induction1 {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) → @@ -543,8 +546,8 @@ lemma1 = subst (λ k → odef infinite k) (sym diso) ltd lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1 lemma3 iφ iφ refl = HE.refl - lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ? ) - lemma3 (isuc ltd) iφ eq = {!!} + lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) diso eq (c<→o< (ω-∈s (ord→od y)) ))) + lemma3 (isuc {y} ltd) iφ eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) diso (sym eq) (c<→o< (ω-∈s (ord→od y)) ))) lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq)) ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (ω-prev-eq eq)) t lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1