Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 459:3d84389cc43f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 18 Mar 2022 23:45:23 +0900 |
parents | 882c24efdc3f |
children | d407cc8499fc |
files | src/filter.agda src/generic-filter.agda |
diffstat | 2 files changed, 27 insertions(+), 24 deletions(-) [+] |
line wrap: on
line diff
--- a/src/filter.agda Fri Mar 18 20:36:42 2022 +0900 +++ b/src/filter.agda Fri Mar 18 23:45:23 2022 +0900 @@ -55,7 +55,7 @@ record ultra-filter { L P : HOD } {LP : L ⊆ Power P} (F : Filter LP) : Set (suc (suc n)) where field proper : ¬ (filter F ∋ od∅) - ultra : {p : HOD } → L ∋ p → ( filter F ∋ p ) ∨ ( filter F ∋ ( P \ p) ) + ultra : {p : HOD } → L ∋ p → ( filter F ∋ p ) ∨ ( filter F ∋ ( P \ p) ) open _⊆_ @@ -81,13 +81,13 @@ -- ultra filter is prime -- -filter-lemma1 : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → ∀ {p q : HOD } → ultra-filter F → prime-filter F +filter-lemma1 : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → ultra-filter F → prime-filter F filter-lemma1 {P} {L} LP F u = record { proper = ultra-filter.proper u ; prime = lemma3 } where lemma3 : {p q : HOD} → L ∋ p → L ∋ q → filter F ∋ (p ∪ q) → ( filter F ∋ p ) ∨ ( filter F ∋ q ) - lemma3 {p} {q} Lp Lq lt with ultra-filter.ultra u Lp + lemma3 {p} {q} Lp Lq lt with ultra-filter.ultra u Lp ... | case1 p∈P = case1 p∈P ... | case2 ¬p∈P = case2 (filter1 F {q ∩ (P \ p)} Lq lemma7 lemma8) where lemma5 : ((p ∪ q ) ∩ (P \ p)) =h= (q ∩ (P \ p)) @@ -110,28 +110,31 @@ -- if Filter contains L, prime filter is ultra -- -filter-lemma2 : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → filter F ∋ L → prime-filter F → ultra-filter F -filter-lemma2 {P} {L} LP F f∋L prime = record { +filter-lemma2 : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) + → (F : Filter LP) → filter F ∋ P → prime-filter F → ultra-filter F +filter-lemma2 {P} {L} LP Lm F f∋P prime = record { proper = prime-filter.proper prime - ; ultra = λ {p} p⊆L → prime-filter.prime prime {!!} {!!} {!!} -- (lemma p p⊆L) + ; ultra = λ {p} L∋p → prime-filter.prime prime L∋p (Lm L∋p) (lemma p (p⊆L L∋p )) } where open _==_ - p+1-p=1 : {p : HOD} → p ⊆ P → P =h= (p ∪ (P \ p)) - eq→ (p+1-p=1 {p} p⊆L) {x} lt with ODC.decp O (odef p x) - eq→ (p+1-p=1 {p} p⊆L) {x} lt | yes p∋x = case1 p∋x - eq→ (p+1-p=1 {p} p⊆L) {x} lt | no ¬p = case2 ⟪ lt , ¬p ⟫ - eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → odef P k ) &iso (incl p⊆L ( subst (λ k → odef p k) (sym &iso) p∋x )) - eq← (p+1-p=1 {p} p⊆L) {x} ( case2 ¬p ) = proj1 ¬p + p⊆L : {p : HOD} → L ∋ p → p ⊆ P + p⊆L {p} lt = power→⊆ P p ( incl LP lt ) + p+1-p=1 : {p : HOD} → p ⊆ P → P =h= (p ∪ (P \ p)) + eq→ (p+1-p=1 {p} p⊆P) {x} lt with ODC.decp O (odef p x) + eq→ (p+1-p=1 {p} p⊆P) {x} lt | yes p∋x = case1 p∋x + eq→ (p+1-p=1 {p} p⊆P) {x} lt | no ¬p = case2 ⟪ lt , ¬p ⟫ + eq← (p+1-p=1 {p} p⊆P) {x} ( case1 p∋x ) = subst (λ k → odef P k ) &iso (incl p⊆P ( subst (λ k → odef p k) (sym &iso) p∋x )) + eq← (p+1-p=1 {p} p⊆P) {x} ( case2 ¬p ) = proj1 ¬p lemma : (p : HOD) → p ⊆ P → filter F ∋ (p ∪ (P \ p)) - lemma p p⊆L = subst (λ k → filter F ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) {!!} -- f∋L + lemma p p⊆P = subst (λ k → filter F ∋ k ) (==→o≡ (p+1-p=1 {p} p⊆P)) f∋P ----- -- -- if there is a filter , there is a ultra filter under the axiom of choise -- -filter→ultra : {P L : HOD} → (LP : L ⊆ Power P) → (F : Filter LP) → ultra-filter F -filter→ultra {P} {L} LP F = ? +-- filter→ultra : {P L : HOD} → (LP : L ⊆ Power P) → ({p : HOD} → L ∋ p → L ∋ ( P \ p)) → (F : Filter LP) → ultra-filter F +-- filter→ultra {P} {L} LP Lm F = {!!} record Dense {L P : HOD } (LP : L ⊆ Power P) : Set (suc n) where field
--- a/src/generic-filter.agda Fri Mar 18 20:36:42 2022 +0900 +++ b/src/generic-filter.agda Fri Mar 18 23:45:23 2022 +0900 @@ -144,16 +144,16 @@ ... | tri≈ ¬a refl ¬c = refl-⊆ ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> n≤m c ) -P-GenericFilter : (P L p0 : HOD ) → L ⊆ Power P → L ∋ p0 → (C : CountableModel ) → GenericFilter L +P-GenericFilter : (P L p0 : HOD ) → (LP : L ⊆ Power P) → L ∋ p0 → (C : CountableModel ) → GenericFilter LP P-GenericFilter P L p0 L⊆PP Lp0 C = record { - genf = record { filter = PDHOD L p0 C ; f⊆PL = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } + genf = record { filter = PDHOD L p0 C ; f⊆L = f⊆PL ; filter1 = {!!} ; filter2 = {!!} } ; generic = {!!} } where PGHOD∈PL : (i : Nat) → (x : Ordinal) → PGHOD i L C x ⊆ Power P PGHOD∈PL i x = record { incl = λ {x} p → {!!} } Pp0 : p0 ∈ Power P Pp0 = {!!} - f⊆PL : PDHOD L p0 C ⊆ Power P + f⊆PL : PDHOD L p0 C ⊆ L -- Power P f⊆PL = record { incl = λ {x} lt → {!!} } -- x∈PP lt } f1 : {p q : HOD} → q ⊆ P → PDHOD P p0 C ∋ p → p ⊆ q → PDHOD P p0 C ∋ q f1 {p} {q} q⊆P PD∋p p⊆q = record { gr = gr PD∋p ; pn<gr = f04 ; x∈PP = {!!} } where -- power← _ _ (incl q⊆P) } where @@ -180,10 +180,10 @@ f5 : odef (* (find-p P C (gr PD∋q) (& p0))) y → odef (* (find-p P C (gr PD∋p) (& p0))) y f5 lt = subst (λ k → odef (* (find-p P C (gr PD∋p) (& p0))) k ) &iso ( incl (p-monotonic P p0 C {gr PD∋p} {gr PD∋q} (<to≤ c)) (subst (λ k → odef (* (find-p P C (gr PD∋q) (& p0))) k ) (sym &iso) lt) ) - fdense : (D : Dense P ) → ¬ (filter.Dense.dense D ∩ PDHOD P p0 C) ≡ od∅ + fdense : (D : Dense L⊆PP ) → ¬ (filter.Dense.dense D ∩ PDHOD P p0 C) ≡ od∅ fdense D eq0 = ⊥-elim ( ∅< {Dense.dense D ∩ PDHOD P p0 C} fd01 (≡od∅→=od∅ eq0 )) where open Dense - p0⊆P : P ∋ p0 + p0⊆P : L ∋ p0 p0⊆P = {!!} fd : HOD fd = dense-f D p0⊆P @@ -246,7 +246,7 @@ df-p {x} lt with ODC.∋-p O G ( Incompatible.r (I x lt) ) ... | yes _ = Incompatible.p⊆q (I x lt) ... | no _ = Incompatible.p⊆r (I x lt) - D-Dense : Dense P + D-Dense : Dense {!!} D-Dense = record { dense = D ; d⊆P = record { incl = λ {x} lt → {!!} } @@ -277,7 +277,7 @@ -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } -- -record valR (x : HOD) {P : HOD} (G : GenericFilter P) : Set (suc n) where +record valR (x : HOD) {P L : HOD} {LP : L ⊆ Power P} (G : GenericFilter LP) : Set (suc n) where field valx : HOD @@ -287,8 +287,8 @@ p∈G : odef (* oG) op is-val : odef (* ox) ( & < * oy , * op > ) -val : (x : HOD) {P : HOD } - → (G : GenericFilter P) +val : (x : HOD) {P L : HOD } {LP : L ⊆ Power P} + → (G : GenericFilter LP) → HOD val x G = TransFinite {λ x → HOD } ind (& x) where ind : (x : Ordinal) → ((y : Ordinal) → y o< x → HOD) → HOD