Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1354:3e14418230bc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 18 Jun 2023 20:17:50 +0900 |
parents | ddbc0726f9bb |
children | db8229569750 |
files | src/bijection.agda |
diffstat | 1 files changed, 4 insertions(+), 27 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Sun Jun 18 18:16:03 2023 +0900 +++ b/src/bijection.agda Sun Jun 18 20:17:50 2023 +0900 @@ -934,38 +934,15 @@ c1<count-A zero (suc i) = ? c1<count-A (suc n) (suc i) with is-A (fun← cn (suc i)) | <-cmp (fun→ cn (g (f (fun← an (suc n))))) (suc i) ... | no nisa | tri< a ¬b ¬c = ? where -- subst (λ k → k ≤ count-A i) (sym (lem11 n ≤-refl)) lem10 where - lem12 : suc (c1 n (suc i)) ≤ count-A i - lem12 = ? lem13 : c1 n i ≡ c1 n (suc i) lem13 = c1+0 {n} {i} nisa lem10 : c1 n i ≤ count-A i lem10 = c1<count-A n i - lem14 : suc (c1 n i) ≤ count-A i -- becase count-A i contains (ani (suc n)) - lem14 = ? - lem11 : (j : ℕ ) → j ≤ n → suc (c1 j (suc i)) ≡ c1 j i - lem11 zero j≤n with <-cmp (fun→ cn (g (f (fun← an zero)))) i | <-cmp (fun→ cn (g (f (fun← an zero)))) (suc i) - ... | tri< a₂ ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = ? - ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = ⊥-elim ( nisa record { a = fun← an 0 ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) b) }) - ... | tri< a ¬b ¬c | tri> ¬a ¬b₁ c₁ = refl - ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = ? - ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = ? - ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c₁ = ? - ... | tri> ¬a ¬b c₁ | tri< a ¬b₁ ¬c = ? - ... | tri> ¬a ¬b c₁ | tri≈ ¬a₁ b ¬c = ? - ... | tri> ¬a ¬b c₁ | tri> ¬a₁ ¬b₁ c₂ = ? - lem11 (suc j) j≤n with <-cmp (fun→ cn (g (f (fun← an (suc j))))) i | <-cmp (fun→ cn (g (f (fun← an (suc j))))) (suc i) - ... | tri< a ¬b ¬c | tri< a₁ ¬b₁ ¬c₁ = cong suc (lem11 j (≤-trans a≤sa j≤n ) ) - ... | tri< a ¬b ¬c | tri≈ ¬a b ¬c₁ = cong suc (lem11 j (≤-trans a≤sa j≤n )) - ... | tri< a₁ ¬b ¬c | tri> ¬a ¬b₁ c₁ = ⊥-elim ( nat-≡< refl ( <-trans a₁ (<-trans a<sa c₁ ))) - ... | tri≈ ¬a b ¬c | tri< a ¬b ¬c₁ = cong suc (lem11 j (≤-trans a≤sa j≤n )) - ... | tri≈ ¬a b ¬c | tri≈ ¬a₁ b₁ ¬c₁ = cong suc (lem11 j (≤-trans a≤sa j≤n )) - ... | tri≈ ¬a b ¬c | tri> ¬a₁ ¬b c₁ = ⊥-elim ( nat-≡< (sym b) (<-trans a<sa c₁) ) - ... | tri> ¬a ¬b c₁ | tri< (s≤s a₁) ¬b₁ ¬c = ⊥-elim (nat-≤> a₁ c₁ ) - ... | tri> ¬a ¬b c₁ | tri≈ ¬a₁ b ¬c = ⊥-elim ( nisa record { a = fun← an (suc j) ; fa=c = trans (sym (fiso← cn _)) (cong (fun← cn) b) }) - ... | tri> ¬a ¬b c₁ | tri> ¬a₁ ¬b₁ c₂ = lem11 j (≤-trans a≤sa j≤n ) - ... | no nisa | tri≈ ¬a b ¬c = ? + lem12 : suc (c1 n (suc i)) ≤ count-A i -- becase count-A i contains (ani (suc n)) + lem12 = ? + ... | no nisa | tri≈ ¬a b ¬c = ⊥-elim (nisa ? ) ... | no nisa | tri> ¬a ¬b c₁ = ? - ... | yes isa | tri< a ¬b ¬c = ? + ... | yes isa | tri< a ¬b ¬c = ? -- count-A contains (suc i), so keep ≤-relation ... | yes isa | tri≈ ¬a b ¬c = ? ... | yes isa | tri> ¬a ¬b c₁ = ?