Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 156:3e7475fb28db
differeent Union approach
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 11 Jul 2019 20:00:30 +0900 |
parents | 53371f91ce63 |
children | afc030b7c8d0 |
files | HOD.agda |
diffstat | 1 files changed, 15 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Thu Jul 11 07:32:28 2019 +0900 +++ b/HOD.agda Thu Jul 11 20:00:30 2019 +0900 @@ -262,15 +262,15 @@ } where ZFSet = OD {suc n} Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n} - Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } + Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = Ord (omax (od→ord x) (od→ord y)) _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = record { def = λ x → def A x ∧ def B x } - Union : OD {suc n} → OD {suc n} - Union U = record { def = λ y → def U (osuc y) } + Union : OD {suc n} → OD {suc n} + Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) } _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) @@ -325,28 +325,21 @@ Union-o : (X : Ordinal {suc n}) → OD {suc n} Union-o X = record { def = λ y → osuc y o< X } - union-ou : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} - union-ou {X} {z} U>z = Ord ( osuc ( od→ord z ) ) - ord-union→ : (x : Ordinal) (z u : OD) → (Ord x ∋ u) ∧ (u ∋ z) → Union-o x ∋ z - ord-union→ x z u plt with trio< ( od→ord u ) ( osuc ( od→ord z )) - ord-union→ x z u plt | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 plt)) - ord-union→ x z u plt | tri< a ¬b ¬c | () - ord-union→ x z u plt | tri≈ ¬a b ¬c = subst ( λ k → k o< x ) b (proj1 plt) - ord-union→ x z u plt | tri> ¬a ¬b c = otrans (proj1 plt) c - -- ord-union← : (x : Ordinal) (z : OD) (X∋z : Union-o x ∋ z) - -- → (Ord x ∋ union-ou {Ord x} {z} X∋z ) ∧ (union-ou {Ord x} {z} X∋z ∋ z ) - -- ord-union← x z X∋z = record { proj1 = lemma ; proj2 = <-osuc } where - -- lemma : Ord x ∋ union-ou {Ord x} {z} X∋z - -- lemma = {!!} -- def-subst {suc n} {_} {_} {Ord x} {_} X∋z refl (sym diso) + +-- union-ou : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} +-- union-ou {X} {z} U>z = ord→od ( osuc ( od→ord z ) ) +-- ord-union→ : (x : Ordinal) (z u : OD) → (Ord x ∋ u) ∧ (u ∋ z) → Union-o x ∋ z +-- ord-union→ x z u plt = {!!} +-- ord-union← : (x : Ordinal) (z : OD) (UX∋z : Union-o x ∋ z) +-- → (Ord x ∋ union-ou {Ord x} {z} {!!} ) ∧ (union-ou {Ord x} {z} {!!} ∋ z ) +-- ord-union← x z UX∋z = record { proj1 = lemma ; proj2 = {!!} } where +-- lemma : Ord x ∋ union-ou {Ord x} {z} {!!} +-- lemma = def-subst {suc n} {_} {_} {Ord x} {_} UX∋z refl (sym diso) union-u : {X z : OD {suc n}} → (U>z : Union X ∋ z ) → OD {suc n} union-u {X} {z} U>z = ord→od ( osuc ( od→ord z ) ) union→ : (X z u : OD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z - union→ X z u xx with trio< ( od→ord u ) ( osuc ( od→ord z )) - union→ X z u xx | tri< a ¬b ¬c with osuc-< a (c<→o< (proj2 xx)) - union→ X z u xx | tri< a ¬b ¬c | () - union→ X z u xx | tri≈ ¬a b ¬c = def-subst {suc n} {_} {_} {X} {osuc (od→ord z)} (proj1 xx) refl b - union→ X z u xx | tri> ¬a ¬b c = {!!} + union→ X z u xx = {!!} union← : (X z : OD) (X∋z : Union X ∋ z) → (X ∋ union-u {X} {z} X∋z ) ∧ (union-u {X} {z} X∋z ∋ z ) union← X z UX∋z = record { proj1 = lemma ; proj2 = lemma2 } where @@ -490,7 +483,7 @@ lemma : {y : Ordinal {suc n}} → def (Union (x , (x , x))) y ≡ osuc y o< osuc (osuc (od→ord x)) lemma {y} = let open ≡-Reasoning in begin def (Union (x , (x , x))) y - ≡⟨⟩ + ≡⟨ {!!} ⟩ def ( Ord ( omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) ))) ( osuc y ) ≡⟨⟩ osuc y o< omax (od→ord x) (od→ord (Ord (omax (od→ord x) (od→ord x) )) )