Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 409:3fba5f805e50
nat→ω-iso
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 29 Jul 2020 00:25:07 +0900 |
parents | 3ac3704b4cb1 |
children | 6dcea4c7cba1 |
files | OD.agda |
diffstat | 1 files changed, 13 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Tue Jul 28 22:34:42 2020 +0900 +++ b/OD.agda Wed Jul 29 00:25:07 2020 +0900 @@ -522,6 +522,9 @@ ω-∈s : (x : HOD) → Union ( x , (x , x)) ∋ x ω-∈s x not = not (od→ord (x , x)) record { proj1 = case2 refl ; proj2 = subst (λ k → odef k (od→ord x) ) (sym oiso) (case1 refl) } +ωs≠0 : (x : HOD) → ¬ ( Union ( x , (x , x)) ≡ od∅ ) +ωs≠0 y eq = ⊥-elim ( ¬x<0 (subst (λ k → od→ord y o< k ) ord-od∅ (c<→o< (subst (λ k → odef k (od→ord y )) eq (ω-∈s y) ))) ) + nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} = ε-induction1 {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) → @@ -558,8 +561,16 @@ lemma = trans (cong (λ k → nat→ω k) (lemma2 {x₁} {_} ltd (subst (λ k → infinite-d k ) (sym diso) ltd) diso ) ) ( prev {ord→od x₁} lemma0 lemma1 ) ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i -ω→nat-iso {Zero} = {!!} -ω→nat-iso {Suc i} = {!!} +ω→nat-iso {i} = lemma i (ω∋nat→ω {i}) oiso where + lemma : {x : Ordinal } → ( i : Nat ) → (ltd : infinite-d x ) → ord→od x ≡ nat→ω i → ω→nato ltd ≡ i + lemma {x} Zero iφ eq = refl + lemma {x} (Suc i) iφ eq = ⊥-elim ( ωs≠0 (nat→ω i) (trans (sym eq) o∅≡od∅ )) -- Union (nat→ω i , (nat→ω i , nat→ω i)) ≡ od∅ + lemma Zero (isuc {x} ltd) eq = ⊥-elim ( ωs≠0 (ord→od x) (subst (λ k → k ≡ od∅ ) oiso eq )) + lemma (Suc i) (isuc {x} ltd) eq = cong (λ k → Suc k ) (lemma i ltd (lemma1 eq) ) where -- ord→od x ≡ nat→ω i + lemma1 : ord→od (od→ord (Union (ord→od x , (ord→od x , ord→od x)))) ≡ Union (nat→ω i , (nat→ω i , nat→ω i)) → ord→od x ≡ nat→ω i + lemma1 eq = subst (λ k → ord→od x ≡ k ) oiso (cong (λ k → ord→od k) + ( ω-prev-eq (subst (λ k → _ ≡ k ) diso (cong (λ k → od→ord k ) (sym + (subst (λ k → _ ≡ Union ( k , ( k , k ))) (sym oiso ) eq )))))) ψiso : {ψ : HOD → Set n} {x y : HOD } → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t