Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1030:40532b0ed230
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 28 Nov 2022 18:53:10 +0900 |
parents | 07ffcf16a3d4 |
children | f276cf614fc5 |
files | src/zorn.agda |
diffstat | 1 files changed, 13 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Mon Nov 28 07:13:19 2022 +0900 +++ b/src/zorn.agda Mon Nov 28 18:53:10 2022 +0900 @@ -295,6 +295,7 @@ ... | case2 lt = tri< ct02 (λ eq → <-irr (case1 (sym eq)) ct02) (λ lt → <-irr (case2 ct02) lt) where ct02 : * a < * b ct02 = ? -- subst (λ k → * k < * b ) (sym eq) lt +fc-total f mf supf {xa} {xb} {a} {b} ca cb | tri≈ a₁ ¬b ¬c = ? fc-total f mf supf {xa} {xb} {a} {b} ca cb | tri< a₁ ¬b ¬c = ? @@ -310,9 +311,14 @@ -- order : {x y w : Ordinal } → x o< y → FClosure A f (supf x) w → w <= supf y -- + +data UChain { A : HOD } { f : Ordinal → Ordinal } + {supf : Ordinal → Ordinal} (x : Ordinal) : (z : Ordinal) → Set n where + ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : u o< x) (supu=u : supf u ≡ u) ( fc : FClosure A f (supf u) z ) → UChain x z + UnionCF : ( A : HOD ) ( f : Ordinal → Ordinal ) ( supf : Ordinal → Ordinal ) ( x : Ordinal ) → HOD UnionCF A f supf x - = record { od = record { def = λ z → odef A z ∧ ( { s : Ordinal} → s o< x → FClosure A f (supf s) z ) } ; + = record { od = record { def = λ z → odef A z ∧ UChain {A} {f} {supf} x z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } @@ -352,7 +358,7 @@ chain-mono : {A : HOD} ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) (supf : Ordinal → Ordinal ) (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) {a b c : Ordinal} → a o≤ b → odef (UnionCF A f supf a) c → odef (UnionCF A f supf b) c -chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ uaa , ch-is-sup ⟫ = ? +chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ ua , ch-is-sup u u<x supu=u fc ⟫ = ⟪ ua , ch-is-sup u (ordtrans<-≤ u<x a≤b) supu=u fc ⟫ record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where @@ -368,6 +374,7 @@ asupf : {x : Ordinal } → odef A (supf x) supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y supfmax : {x : Ordinal } → z o< x → supf x ≡ supf z + supf0 : supf o∅ ≡ y minsup : {x : Ordinal } → x o≤ z → MinSUP A (UnionCF A f supf x) supf-is-minsup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ MinSUP.sup ( minsup x≤z ) @@ -386,7 +393,7 @@ chain∋init : odef chain y chain∋init = ⟪ ay , ? ⟫ f-next : {a z : Ordinal} → odef (UnionCF A f supf z) a → odef (UnionCF A f supf z) (f a) - f-next {a} ⟪ aa , ch-is-sup ⟫ = ? + f-next {a} ⟪ aa , cp ⟫ = ? initial : {z : Ordinal } → odef chain z → * y ≤ * z initial {a} ⟪ aa , ua ⟫ = ? f-total : IsTotalOrderSet chain @@ -438,9 +445,9 @@ supf-idem : (mf< : <-monotonic-f A f) {b : Ordinal } → b o≤ z → supf b o≤ z → supf (supf b) ≡ supf b supf-idem mf< {b} b≤z sfb≤x = z52 where z54 : {w : Ordinal} → odef (UnionCF A f supf (supf b)) w → (w ≡ supf b) ∨ (w << supf b) - z54 {w} ⟪ aw , fc ⟫ = order ? ? where - u<b : supf b o< b - u<b = ? + z54 {w} ⟪ aw , ch-is-sup u u<x su=u fc ⟫ = order su<b fc where + su<b : u o< b + su<b = supf-inject (subst (λ k → k o< supf b ) (sym (su=u)) u<x ) z52 : supf (supf b) ≡ supf b z52 = sup=u asupf sfb≤x ⟪ record { x≤sup = z54 } , IsMinSUP→NotHasPrev asupf z54 ( λ ax → proj1 (mf< _ ax)) ⟫