Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 795:408e7e8a3797
csupf depends on order cyclicly
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 05 Aug 2022 16:21:46 +0900 |
parents | 0acbc2b102e9 |
children | 171123c92007 |
files | src/zorn.agda |
diffstat | 1 files changed, 22 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Fri Aug 05 11:09:04 2022 +0900 +++ b/src/zorn.agda Fri Aug 05 16:21:46 2022 +0900 @@ -310,15 +310,27 @@ f-total : IsTotalOrderSet chain sup : {x : Ordinal } → x o≤ z → SUP A (UnionCF A f mf ay supf x) - supf-is-sup : {x : Ordinal } → (x<z : x o≤ z) → supf x ≡ & (SUP.sup (sup x<z) ) sup=u : {b : Ordinal} → (ab : odef A b) → b o< z → IsSup A (UnionCF A f mf ay supf (osuc b)) ab → supf b ≡ b - csupf : {b : Ordinal } → b o≤ z → odef (UnionCF A f mf ay supf b) (supf b) - supf-mono : {x y : Ordinal } → x o< y → supf x o≤ supf y + supf-is-sup : {x : Ordinal } → (x≤z : x o≤ z) → supf x ≡ & (SUP.sup (sup x≤z) ) fcy<sup : {u w : Ordinal } → u o< z → FClosure A f y w → (w ≡ supf u ) ∨ ( w << supf u ) -- different from order because y o< supf fcy<sup {u} {w} u<z fc with SUP.x<sup (sup (o<→≤ u<z)) ⟪ subst (λ k → odef A k ) (sym &iso) (A∋fc {A} y f mf fc) , ch-init (subst (λ k → FClosure A f y k) (sym &iso) fc ) ⟫ ... | case1 eq = case1 (subst (λ k → k ≡ supf u ) &iso (trans (cong (&) eq) (sym (supf-is-sup (o<→≤ u<z) ) ) )) ... | case2 lt = case2 (subst (λ k → * w < k ) (subst (λ k → k ≡ _ ) *iso (cong (*) (sym (supf-is-sup (o<→≤ u<z) ))) ) lt ) + + csupf : {b : Ordinal } → b o< z → odef (UnionCF A f mf ay supf b) (supf b) + csupf {b} b<z = ⟪ asb , ch-is-sup b o≤-refl is-sup (init asb refl) ⟫ where + asb : odef A (supf b) + asb = subst (λ k → odef A k ) (sym (supf-is-sup ? )) (SUP.A∋maximal (sup ? )) + is-sup : ChainP A f mf ay supf b + is-sup = record { fcy<sup = fcy<sup b<z ; order = ? ; supu=u = ? } + supf-mono : {x y : Ordinal } → x o< y → supf x o≤ supf y + supf-mono = ? + -- supf-is-sup {x} x≤z = ? where + -- zc51 : * (supf x) ≡ SUP.sup (sup x≤z ) + -- zc51 = ==→o≡ record { eq→ ? ; eq← = ? } + -- zc50 : supf x ≡ & (SUP.sup (sup x<z) ) + -- zc50 = ? order : {b s z1 : Ordinal} → b o< z → supf s o< supf b → FClosure A f (supf s) z1 → (z1 ≡ supf b) ∨ (z1 << supf b) order {b} {s} {z1} b<z sf<sb fc = zc04 where zc01 : {z1 : Ordinal } → FClosure A f (supf s) z1 → UnionCF A f mf ay supf b ∋ * z1 @@ -333,7 +345,7 @@ s<z : s o< z s<z = ordtrans s<b b<z zc03 : odef (UnionCF A f mf ay supf b) (supf s) - zc03 with csupf (o<→≤ s<z) + zc03 with csupf s<z ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ ... | ⟪ as , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ordtrans u≤x (osucc s<b)) is-sup fc ⟫ zc01 (fsuc x fc) = subst (λ k → odef (UnionCF A f mf ay supf b) k ) (sym &iso) zc04 where @@ -882,10 +894,12 @@ no-extension : ¬ spu ≡ x → ZChain A f mf ay x no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = {!!} - ; supf-is-sup = ? + ; sup = ? ; supf-is-sup = ? ; csupf = ? ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal ; supf-mono = ? } where - UnionCF⊆ : UnionCF A f mf ay supf1 x ⊆' UnionCF A f mf ay ? x - + supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal + supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z + UnionCF⊆ : {u : Ordinal} → (a : u o< x ) → UnionCF A f mf ay supf1 x ⊆' UnionCF A f mf ay (supfu a) x + UnionCF⊆ = ? zc5 : ZChain A f mf ay x zc5 with ODC.∋-p O A (* x) ... | no noax = no-extension ? -- ¬ A ∋ p, just skip @@ -894,7 +908,7 @@ ... | case1 pr = no-extension ? ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A pchain ax ) ... | case1 is-sup = record { initial = {!!} ; chain∋init = {!!} ; supf = supf1 ; sup=u = {!!} - ; supf-is-sup = ? + ; sup = ? ; supf-is-sup = ? ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = ? ; supf-mono = ? } where -- x is a sup of (zc ?) ... | case2 ¬x=sup = no-extension ? -- x is not f y' nor sup of former ZChain from y -- no extention