Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 484:419a3f4d5d97
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 06 Apr 2022 17:46:41 +0900 |
parents | ed29002a02b6 |
children | 94586e4e0378 |
files | src/zorn.agda |
diffstat | 1 files changed, 10 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/zorn.agda Wed Apr 06 14:22:18 2022 +0900 +++ b/src/zorn.agda Wed Apr 06 17:46:41 2022 +0900 @@ -75,7 +75,7 @@ record ZChain ( A : HOD ) (y : Ordinal) (_<_ : (x y : HOD) → Set n ) : Set (suc n) where field fb : Ordinal → HOD - A∋fb : (ox : Ordinal ) → ox o< y → A ∋ fb ox + A∋fb : (ox : Ordinal ) → A ∋ fb ox monotonic : (ox oy : Ordinal ) → ox o< y → ox o< oy → fb ox < fb oy Zorn-lemma : { A : HOD } → { _<_ : (x y : HOD) → Set n } @@ -103,14 +103,20 @@ z01 {a} {b} A∋a A∋b (case2 a<b) b<a = {!!} -- proj1 (PO (me A∋b) (me A∋a)) b<a ⟪ a<b , (λ b=a → proj1 (proj2 (PO (me A∋b) (me A∋a)) b=a ) b<a ) ⟫ -- ZChain is not compatible with the SUP condition + record BX (y : Ordinal) (fb : Ordinal → HOD ) : Set n where + field + bx : Ordinal + is-fb : y ≡ & (fb bx ) B : (z : ZChain A (& A) _<_ ) → HOD - B = {!!} + B z = record { od = record { def = λ x → BX x ( ZChain.fb z ) } ; odmax = & A ; <odmax = {!!} } + B⊆A : (z : ZChain A (& A) _<_ ) → B z ⊆ A + B⊆A z = record { incl = λ {x} bx → subst (λ k → odef A k ) (sym (BX.is-fb bx)) (ZChain.A∋fb z (BX.bx bx)) } ZChain→¬SUP : (z : ZChain A (& A) _<_ ) → ¬ (SUP A (B z) _<_ ) - ZChain→¬SUP z sp = ⊥-elim {!!} where + ZChain→¬SUP z sp = ⊥-elim (z02 (ZChain.fb z {!!}) {!!} {!!} ) where z03 : & (SUP.sup sp) o< osuc (& A) z03 = ordtrans (c<→o< (SUP.A∋maximal sp)) <-osuc z02 : (x : HOD) → B z ∋ x → SUP.sup sp < x → ⊥ - z02 x xe s<x = {!!} -- z01 (incl (ZChain.B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x + z02 x xe s<x = z01 (incl (B⊆A z) xe) (SUP.A∋maximal sp) (SUP.x≤sup sp xe) s<x ind : HasMaximal =h= od∅ → (x : Ordinal) → ((y : Ordinal) → y o< x → ZChain A y _<_ ) → ZChain A x _<_