changeset 463:433866b43992

generic filter done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 20 Mar 2022 17:03:08 +0900
parents 667c54e6fa1f
children 5acf6483a9e3
files src/generic-filter.agda
diffstat 1 files changed, 17 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
--- a/src/generic-filter.agda	Sun Mar 20 16:29:03 2022 +0900
+++ b/src/generic-filter.agda	Sun Mar 20 17:03:08 2022 +0900
@@ -194,13 +194,22 @@
            fd09 Zero = Lp0
            fd09 (Suc i) with is-o∅ ( & ( PGHOD i L C (find-p L C i (& p0))) )
            ... | yes _ = fd09 i
-           ... | no _ = {!!}
+           ... | no not = fd17 where
+              fd19 =  ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))  
+              fd18 : PGHOD i L C (find-p L C i (& p0)) ∋ fd19
+              fd18 = ODC.x∋minimal O (PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+              fd17 :  odef L ( & (ODC.minimal O ( PGHOD i L C (find-p L C i (& p0))) (λ eq → not (=od∅→≡o∅ eq)))  )
+              fd17 = proj1 fd18 
            an :  Nat
            an = ctl← C (& (dense D)) MD  
            pn : Ordinal
            pn = find-p L C an (& p0)
            pn+1 : Ordinal
            pn+1 = find-p L C (Suc an) (& p0)
+           fd26 : dense D ≡ * (ctl→ C an) 
+           fd26 = begin dense D ≡⟨ sym *iso ⟩
+                    * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
+                    * (ctl→ C an) ∎  where open ≡-Reasoning
            fd07 : odef (dense D) pn+1
            fd07 with is-o∅ ( & ( PGHOD an L C (find-p L C an (& p0))) )
            ... | yes y = ⊥-elim ( ¬x<0 ( _==_.eq→ fd10 ⟪ fd13 , ⟪ fd14 , fd15 ⟫ ⟫ ) ) where
@@ -211,18 +220,19 @@
               fd13 : L ∋ ( dense-f D fd12 )
               fd13 = incl (d⊆P D) (  dense-d D fd12 )
               fd14 : (* (ctl→ C an)) ∋ ( dense-f D fd12 )
-              fd14 = subst (λ k → odef k (& ( dense-f D fd12 ) )) fd16 (  dense-d D fd12 ) where
-                  fd16 : dense D ≡ * (ctl→ C an) 
-                  fd16 = begin dense D ≡⟨ sym *iso ⟩
-                    * ( & (dense D)) ≡⟨ cong (*) (sym (ctl-iso→  C MD )) ⟩
-                    * (ctl→ C an) ∎  where open ≡-Reasoning
+              fd14 = subst (λ k → odef k (& ( dense-f D fd12 ) )) fd26 (  dense-d D fd12 ) 
               fd15 :  (y : Ordinal) → odef (* (& (dense-f D fd12))) y → odef (* (find-p L C an (& p0))) y
               fd15 y lt = subst (λ k → odef  (* (find-p L C an (& p0)))  k ) &iso ( incl (dense-p D  fd12 ) fd16  ) where
                   fd16 : odef (dense-f D fd12) (& ( * y))
                   fd16 = subst₂ (λ j k → odef j k ) (*iso) (sym &iso) lt
               fd10 :  PGHOD an L C (find-p L C an (& p0)) =h= od∅
               fd10 = ≡o∅→=od∅ y
-           ... | no _ = {!!}
+           ... | no not = fd27 where
+              fd29 =  ODC.minimal O ( PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+              fd28 : PGHOD an L C (find-p L C an (& p0)) ∋ fd29
+              fd28 = ODC.x∋minimal O (PGHOD an L C (find-p L C an (& p0))) (λ eq → not (=od∅→≡o∅ eq))
+              fd27 :  odef (dense D) (& fd29)
+              fd27 = subst (λ k → odef k (& fd29)) (sym fd26) (proj1 (proj2 fd28)) 
            fd03 : odef (PDHOD L p0 C) pn+1
            fd03 = record { gr = Suc an ; pn<gr = λ y lt → lt ; x∈PP = fd09 (Suc an)} 
            fd01 : (dense D ∩ PDHOD L p0 C) ∋ (* pn+1)