Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1369:43471e03d6fe
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 21 Jun 2023 14:46:51 +0900 |
parents | e5e592584382 |
children | 3bcff593255e |
files | src/bijection.agda |
diffstat | 1 files changed, 10 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/bijection.agda Wed Jun 21 13:24:54 2023 +0900 +++ b/src/bijection.agda Wed Jun 21 14:46:51 2023 +0900 @@ -685,17 +685,23 @@ -- induction on n is no good, because (ani (suc n)) may happen in clist (c n) -- so we cannot recurse on n<ca-list itself. -- - del : (i : ℕ) → (cl : List C) → any-cl (suc i) cl → List C -- del 0 contains ani 0 + del : (i : ℕ) → (cl : List C) → any-cl i cl → List C -- del 0 contains ani 0 del = ? - del-any : (i : ℕ) → (cl : List C) → (a : any-cl (suc i) cl) → any-cl i (del i cl a ) + del-any : (i : ℕ) → (cl : List C) → (a : any-cl (suc i) cl) → any-cl i (del (suc i) cl a ) del-any = ? - del-ca : (i : ℕ) → (cl : List C) → (a : any-cl (suc i) cl ) + del-ca : (i : ℕ) → (cl : List C) → (a : any-cl i cl ) → suc (ca-list cl) ≡ ca-list (del i cl a) del-ca = ? lem06 : suc n < ca-list (clist (c (suc n))) lem06 = lem31 where lem30 : (i : ℕ) → (cl : List C) → (i≤n : i ≤ suc n) → (a : any-cl (suc i) cl) → suc i < ca-list cl - lem30 0 cl i≤n a = ? + lem30 0 cl i≤n a = begin + 2 ≤⟨ s≤s (s≤s z≤n) ⟩ + suc (suc (ca-list (del 1 (del 0 cl a) ?) )) ≡⟨ ? ⟩ + suc (ca-list (del 1 cl ?) ) ≡⟨ ? ⟩ + ca-list cl ∎ where + open ≤-Reasoning + -- <-transʳ ? (subst (λ k → ca-list (del ? cl ?) < k) (a-list-ca ? ? (a _ ≤-refl)) a<sa ) lem30 (suc i) cl i≤n a = begin suc (suc (suc i)) ≤⟨ s≤s (lem30 i (del (suc i) cl a ) (≤-trans a≤sa i≤n) (del-any (suc i) cl a)) ⟩ suc (ca-list (del (suc i) cl a)) ≡⟨ del-ca (suc i) cl a ⟩