Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 121:453ef0d4ee8a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 27 Jun 2019 19:26:45 +0900 |
parents | ac214eab1c3c |
children | 4d2434513228 |
files | HOD.agda |
diffstat | 1 files changed, 9 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/HOD.agda Thu Jun 27 08:34:19 2019 +0900 +++ b/HOD.agda Thu Jun 27 19:26:45 2019 +0900 @@ -221,17 +221,19 @@ -- Power Set of X ( or constructible by λ y → def X (od→ord y ) ZFSubset : {n : Level} → (A x : HOD {suc n} ) → HOD {suc n} -ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = {!!} } +ZFSubset A x = record { def = λ y → def A y ∧ def x y ; otrans = lemma } where + lemma : {z : Ordinal} → def A z ∧ def x z → {y : Ordinal} → y o< z → def A y ∧ def x y + lemma {z} d {y} y<z = record { proj1 = otrans A (proj1 d) y<z ; proj2 = otrans x (proj2 d) y<z } Def : {n : Level} → (A : HOD {suc n}) → HOD {suc n} -Def {n} A = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) +Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) -- Constructible Set on α L : {n : Level} → (α : Ordinal {suc n}) → HOD {suc n} L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) - record { def = λ y → osuc y o< (od→ord (L {n} (record { lv = lx ; ord = Φ lx }) )) ; otrans = {!!} } + cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) omega : { n : Level } → Ordinal {n} omega = record { lv = Suc Zero ; ord = Φ 1 } @@ -318,13 +320,13 @@ power→ : (A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x power→ A t P∋t {x} t∋x = proj1 lemma-s where minsup : HOD - minsup = ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) + minsup = ZFSubset A ( Ord ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) lemma-t : csuc minsup ∋ t lemma-t = {!!} -- o<→c< (o<-subst (sup-lb (o<-subst (c<→o< P∋t) refl diso )) refl refl ) - lemma-s : ZFSubset A ( ord→od ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x + lemma-s : ZFSubset A ( Ord ( sup-x (λ x → od→ord ( ZFSubset A (ord→od x))))) ∋ x lemma-s with osuc-≡< ( o<-subst (c<→o< lemma-t ) refl diso ) - lemma-s | case1 eq = def-subst {!!} oiso refl - lemma-s | case2 lt = transitive {n} {minsup} {t} {x} (def-subst {!!} oiso refl ) t∋x + lemma-s | case1 eq = {!!} + lemma-s | case2 lt = transitive {n} {minsup} {t} {x} {!!} t∋x -- -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t -- Power A is a sup of ZFSubset A t, so Power A ∋ t